Optimization of robot movements using genetic
algorithms and simulation

Brandon Zahn, Jake Fountain, Trent Houliston, Alexander Biddulph, Stephan
Chalup and Alexandre Mendes

School of Electrical Engineering and Computing
Faculty of Engineering and Built Environment
The University of Newcastle, Callaghan, NSW, 2308, Australia.
Alexandre.Mendes@newcastle.edu.au

Abstract. This work describes the optimization of two robot move-
ments in the context of the Humanoid league competition at RoboCup. A
multi-objective genetic algorithm (MOGA) was used in conjunction with
the real-time physics simulator Gazebo. The motivation for this work
was that the NUbots team, from the University of Newcastle, lacked a
simulation platform for their soccer-playing robots. Gazebo was the pre-
ferred choice of simulator, offering built-in compatibility with the Robot
Operating System (ROS). The NUbots robot software, however, uses a
proprietary message-passing framework in place of ROS. This work thus
describes the pathway to use Gazebo with non-ROS compliant appli-
cations. In addition, it describes how MOGA can be used to optimize
complex movements in an efficient manner. The two robot movements
optimized were a kick script and the walk engine. For the kick script, the
resulting optimal configuration improved the kick distance by a factor
of six, with 50% less torso sway. For the walk engine, the forward speed
increased by 50%, with 38% less torso sway, compared to the manually-
tuned walk engine.

Keywords: Simulation, walk engine, optimization, multi-objective

1 Introduction

The use of optimization to fine-tune the movement of robots has been the fo-
cus of attention in recent years, particularly in the context of legged robots
[3]. Those types of robots normally use controllers that allow them to maintain
balance while performing complex tasks such as walking, turning and jumping.
Some of those controllers might have several parameters, depending on the tasks
that they perform, which need to be tuned. Just as an example, the walk con-
troller used in this work has 46 parameters that can be individually tuned and
finding the right trade-off between balance and speed is a difficult task. The
work presented here is significant due to the combination of tools that it uses
(the Gazebo simulator and a proprietary message-passing framework called NU-
Clear) and the challenge that it posed. The lessons learned in terms of software

engineering and how to effectively make the two systems communicate are im-
portant contributions. From the perspective of optimization, the contribution is
the demonstration of how NSGA-II [4] manages to obtain very good solutions
in short periods of time and requiring few generations, which is an important
aspect when the evaluation of individual solutions is a costly task.

Our work follows on the footsteps of other multi-objective optimization stud-
ies conducted on legged robots. Among those we cite [8], who used NSGA-II to
optimize a walk controller for a quadruped robot. More recently, we have the
work of Juang and Yeh (2017) [6], who also used NSGA-II in the optimization
of a walk controller for a biped NAO robot. The results presented here indicate
that the approach is suitable for the optimization of simpler movements (e.g. a
kick script), as well as a considerably more complex walk engine.

2 Kick script and walk engine optimization

This work was developed with the NUgus robotic platform in mind [2]. The
original igus platform was developed by the University of Bonn as an open
platform in 2015 [1] and the NUbots team made a number of modifications
to the original model, naming it NUgus afterwards. A simulation model of the
NUgus was also derived from the original igus model, and used in our tests.

Two optimization problems are addressed. The first one is the tuning of the
kick script used by the NUgus to kick the ball. The script consists of a sequence of
six target positions for each of the 20 motors in the robot, i.e. they correspond to
a sequence of poses. The first values in the sequence refer to the initial positions
of each motor when the kick is triggered, and the last values refer to their final
position after the kick is concluded. The four intermediate positions are strategic
poses, e.g. the pose when the kick leg is brought backwards; the pose when the
kick leg is at its maximum extension after ball contact, etc. The optimization
goal is to find the positions of the motors in each of the four intermediate poses
so that the ball’s travelled distance is maximized, and maximum torso sway is
minimized (to reduce the chances of the robot falling over while the kick is being
executed). In order to provide information about how a solution for the problem
is encoded, the values for motor positions are integers in the interval [0, 1024].
Therefore, there are 80 integer variables to be optimized, all of them within the
interval above.

The second optimization problem refers to the walk engine, and the goal is to
optimize 46 parameters used by the controller responsible for moving the robot
forward. The goal in this case is to maximize forward speed, while minimizing
maximum torso sway. The parameters are represented by real numbers in differ-
ent ranges for each parameter. Again, to give an indication of the search space
size for this problem, the largest interval among the controller’s parameters is
[0, 100].

3 Methodology

In this section we will explain four elements of this study: (1) the NUbots soft-
ware system, (2) the Gazebo simulator, (3) the communication middleware and
(4) the multi-objective genetic algorithm.

3.1 Nubots software system - NUClear

In recent years, the NUbots developed a proprietary software architecture named
NUClear [5]. It is a framework designed to aid in the development of real time
modular systems and is built from a set of C++ template meta-programs that
control the flow of information through the system. These meta-programs reduce
the cost of routing messages between modules, resulting in faster communica-
tion times. Since NUClear utilises a co-messaging system, it allows for simple
event callback functions through an expressive domain specific language (DSL).
The DSL is highly extensible and provides several attachment points to develop
new DSL keywords as required. NUClear has been successfully applied in several
projects for robotics and virtual reality, and also in the NUgus Humanoid Plat-
form [2]. A detailed description of NUClear is given in [5], which also provides a
comparison with the Robot Operating System (ROS)! in terms of features and
communication performance.

3.2 Gazebo simulator

Gazebo is an open-source, physics-based robotics simulator. It is very popular
with the simulation-league of RoboCup, being utilised by all teams to run their
robots in simulations. Considerable support and information are available online
to assist the integration of any ROS compliant robotic system with the Gazebo
simulator. However, this is not the case for proprietary software, such as NU-
Clear. Since Gazebo has strong connections with RoboCup, and resources such
as 3D models and data for the igus platform are readily available, it would be
a logical decision to choose Gazebo to integrate with the team’s software archi-
tecture and NUClear. Integrating ROS into the NUbots software architecture
has been opposed due to the time required to re-factor the entire code, and also
because NUClear is arguably more flexible than ROS, as described in [5].

Gazebo depends on several packages but the most significant for this work
is the Ignition Transport library?, which provides Gazebo with an intra- and
inter-process co-messaging communication protocol for robot simulation (similar
to NUClear). It is an open source communication library that allows sharing
data between nodes that could be running within the same process in the same
machine or in machines located on the same network.

! nttp://www.ros.org/
2 http://ignitionrobotics.org

3.3 Communication middleware

This section provides an overview of the communications configuration for this
study. An online repository® has been created, where developers can download all
necessary files and use them. The NUbots codebase repository? contains all the
required source code for setting up a virtual machine (VM) that runs the NUbots
software system under the NUClear framework. A diagram of the configuration
for communications between Gazebo and the VM is shown in Figure 1 and
described below.

The main contribution in terms of communication infrastructure was the
creation of two communication modules. The first one sits within the Gazebo
simulator in the host machine and is named Discovery node’. The goal of this
module is to receive servo commands from the NUbots software that are then
applied to the robot model in the simulation. In addition, it sends the position
of each joint of the robot model, as well as gyro and accelerometer data back to

3 http://github.com/NUbots/Gazebo
* http://github.com/NUbots/NUbots

< domain> <domain>>
Host machine Virtual machine
<K process>> <K process>>
Gazebo simulator NUC]lear
<model> <world>> <model> < PowerPlant>>
ball model environment igus model Main executable
< Gazebo plugin>> <« Gazebo plugin> <« Gazebo plugin>> < Reactor>>
ball model plugin world plugin igus model plugin Gazebo module
< Discovery layer> < Discovery layer>
Discovery node’ Discovery node
\ //
<Local Area Network>
TCP/UDP communications

Fig. 1. The configuration for communications between the NUbots software system
and Gazebo. On the left, we have the host machine, which runs the Gazebo simulator.
On the right, we have a virtual machine that runs the NUbots software system. Two
communication nodes (the Discovery nodes) were created using the Ignition Transport
library — one for each module. Those nodes manage all the communication through the
network and operate in a two-way, publish-subscribe fashion. In each communication
cycle, the NUbots software in the virtual machine sends data to the Gazebo simulator
about where to move each of the 20 motors, and the simulator sends back data about the
position of each limb, as well as gyroscope and accelerometer data. The communication
is in real time, via a common TCP/UDP communication layer.

the Nubots software, so it can be used in the walk engine. The second communi-
cation module sits within the NUbots software side (namely Discovery node). It
manages the publishing of the data that its Gazebo counterpart subscribes to,
and subscribes to the data published by the Gazebo’s Discovery node’. The two
modules communicate via a common TCP/UDP communication layer.
Integrating Gazebo with the NUClear framework required several iterations,
until a configuration that was able to compile using the NUbots toolchain was
found. Several hurdles had to be crossed in that process, from compilation issues
due to package conflicts (which required Gazebo to be built from source), to
synchronization problems between the two environments (which was solved with
the implementation of a custom clock function). For a thorough analysis of all
the issues that occurred during the integration process and their corresponding
solutions, we refer the reader to reference [10]. This reference will be valuable to
developers who want to use Gazebo with non-ROS compliant applications.

3.4 Multi-Objective Genetic Algorithm (MOGA)

As mentioned before, this work focused on two optimization tasks: (a) the kick
script parameters and (b) the walk engine parameters for forward walking.
The Multi-Objective Genetic Algorithm (MOGA) implemented uses the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [4]. NSGA-II has several
advantages over other well-known MOEASs, such as the Strength Pareto Evolu-
tionary Algorithm (SPEA) [11]. Among those advantages, we cite the concept
of minimal distance between sets of solutions, which results in less fitness eval-
uations until the population converges, and most notably, maintains a strong
population diversity throughout the evolutionary process. Now, we describe how
MOGA was used in each of the optimization problems.

3.5 Optimizing the kick script

In order to optimize the kick script parameters using MOGA, firstly a suitable
representation for a solution must be defined. The kick script is defined by a
sequence of target positions for each motor (i.e. script frames). In out imple-
mentation, the first and last frames are fixed, and the MOGA can change the
values for the intermediate frames, only. A valid solution contains 80 genes (20
motors and 4 intermediate poses), encoded as integers in the interval [0, 1024].

Objective function Two objective functions were chosen to evaluate the qual-
ity of the kick. Obj; was designed to measure the robot’s stability. By using the
IMU sensor in the torso, the accelerometer data is recorded during a kick and
a maximum field plane sway ||f.p>9ma$|| value is calculated. The field plane sway
||WSH is the 2D vector magnitude of the x and y components of the accelerom-
eter sensor, calculated as:

||.m9|| = \/ 7iccel + 73006[(mS_Q) (1)

Hm” is calculated each time a new sensor message arrives, which is 90 times
per second, and Obj; is to minimize Hmmmﬂ

Objs is the maximization of the ball distance from the kick location. Since a
minimization function is required by the MOGA framework, Obj, is defined as:

Objs = min(l) (m™") (2)

ball distance

3.6 Optimizing walk engine parameters

This optimization involved the tuning of 46 parameters that describe how the
walk engine generates waypoints for the joints during a walk cycle [9].

The representation of a solution consisted of 46 real values, and each of them
was given minimum and maximum possible values, set at 50% of the original
value in each direction. For example, if a parameter is originally set at 0.4,
the minimum and maximum values then become 0.2 and 0.6, respectively. No-
tice that the original values correspond to the current hand-tuned walk engine,
which already produces a relatively stable and fast walk. Thus, we expect the
parameters of the optimized walk to be relatively close.

The two objective functions for walk evaluation were the minimization of the
time required to walk a distance of 2.5 meters, starting from a standing pose; and
the minimization of the maximum 3D vector magnitude of the three components
of the accelerometer, Hmm(mﬂ, where:

||6EE€7|| = \/ﬁgccel + 72666[+ 72 (mS_Q) (3)

accel

4 Results

4.1 Results for the kick script optimization

The MOGA framework ran for 300 generations with a population size of 40
individuals. Additional parameters are listed in Table 1 and the results are shown
in Figure 2. The parameters were determined after a series of exploratory tests
and empirical observation of the evolution of the population of solutions.

In our tests, we opted for a high crossover probability, aiming at a fast evolu-
tion of the population, and a low mutation probability, since diversity would be
handled by the minimum distance between solutions, which is part of NSGA-II.
In Figure 2, we highlight four solutions. Indo is the original, hand-tuned kick

Table 1. NSGA-II parameters used in the kick script and walk engine optimizations.
For detailed information about those parameters, please refer to [4].

Test popSize gens mutProb crossProb etaC etalM
Kick script 40 300 0.025 0.8 15 40
Walk engine 40 50 0.025 0.8 13 20

1»75 T T T T ‘
. o.,‘.'a:l S . :- “ 20" . .« .
L] 'Y °
© e ° lege ° Indo(35.816,1.652)
1.5} 5 -
¢ ° « Generation 1
. . . » Generation 10
125} ‘ ¢ o Generation 75 | |
7 . Generation 150
g o o o Generation 300
N . oo ol 1] . . °
é]. [.o = e -
[w] L]
% I
=)
3 0.75 .
S s o Fewe e L., |
' ®@—nd,(13.923,0.449)
° o
[] [_J (]
0.95 e ®e” 00_o 00 (1] ° B
Inde(19.591,0.282)
Indp(16,0.281)
0 | | | | | |

12 16 20 24 28 32 36
Obji || fPSmac]| (ms2)

Fig. 2. Populations of solutions found during the evolutionary process for the opti-
mization of the kick script on a simulated grass surface. Notice how the population
converges to high quality solutions in 300 generations, with lower torso sway values
and higher ball distances (in Objz the values are inverted, so lower is better). Four
individual solutions are highlighted for illustrative purposes.

script (distance of 0.6 m; acceleration of 35.8 ms~2) and becomes dominated
already by generation 10. After 300 generations, several trade-off solutions were
found, with a good concentration around the 3.3 m distance and instantaneous
acceleration of 15 ms—2. In that group of solutions, we highlighted three, with
Indp offering a good trade-off between the two objectives. That solution has a
maximum torso acceleration of 16.0 ms~2 and a resulting ball distance of 3.5 m.
That represents an improvement of almost 6-fold for the distance travelled by
the ball, while the maximum lateral acceleration was reduced to less than half
of the original value.

Porting the kick script to the NUgus robot: After completing the kick
script optimization, we tested three candidate solutions on the robot itself,
namely Inda, Indg and Indc. This test was fundamental to determine if the
simulation settings were a correct representation of the real world. The so-called

reality gap between simulation and real world is a major obstacle for the actual
use of simulation results in real robotic platforms. For more information about
this topic, we refer the reader to a recent survey [7]. Among the three solutions
tested, the only one that resulted on the robot still standing at the end of the
run was Inda. The other two led to the robot falling over at the end of the kick.
The most probable reasons for that result might be the incorrect simulation of
the friction between the studs on the robot’s feet and the artificial grass surface;
as well as the internal behaviour of the individual servos not being accurately
simulated. This topic will require additional investigation in the future.

Figure 3 shows the time-lapse sequences for the kicks represented by Ind4
(top row) and Indp (bottom row), tested on the real robot. The top sequence
shows the ball travelling a bit over 2 meters from the middle of the field towards
the goal (which is very similar to the simulated result), and the robot still stand-
ing on the last frame. The bottom sequence shows the ball travelling all the way
to the goal (i.e. more than 3 meters) but the robot falls over at the end.

4.2 Results for walk engine

The framework was set up with the input parameters listed in Table 1 and was
run for 50 generations. The low number of generations was chosen due to time
constraints, as each evaluation of the walk required ~1 minute of simulation.
The results are shown in Figure 4. The evolutionary process was again successful.
The time required for the robot to walk 2.5 m dropped from 32.5 s to 21.5 s (see

Fig. 3. Time-lapse of two of the kick scripts highlighted in Figure 2 — Inda (top) and
Indp (bottom) — running on the real NUgus robot. In both cases, the distance travelled
by the ball is very similar to the simulated results. However, only for solution Inda
the robot still stands at the end, while Indg leads to the robot falling over — in the
simulation, both scripts resulted in the robot standing at the end.

110

o Generation 1
» Generation 10
100 - ° Generation 30 | |
. e Generation 50
90 | < g |
&‘: []
s 80 . |
= Indo(32.5,70.75) ° .
= ° .
g ® . .
13\‘ 70 |- oy . - © . . :
S ° . .
= % . . .
8 00F . R RPN |
&) . : * .
~ ° e o) % :’, H e e o °
e o oo - % ¢
50 - IS] e -
o ® S, .
$‘o o’ e
10 | o :
Ind(21.53,43.18)
30 | | | | |
15 20 25 30 35 40 45

Objy : Time (s)

Fig. 4. Evolution of the populations during the walk engine parameters optimization.
Notice how the population converges to high quality solutions in 50 generations, with
lower times required to walk the 2.5 m distance, and smaller torso sway values. Two
solutions are highlighted for illustrative purposes.

solution Ind,4 in Figure 4, compared to the original, hand-tuned solution Indp),
i.e. an increase of 50% in forward speed. The maximum torso acceleration was
reduced from 70.7 ms~—2 to 43.2 ms—2.

5 Conclusion

This work presented a multi-objective genetic algorithm approach for the op-
timization of two robot movements: kick and forward walk. Moreover, it also
described how to setup a communication bus between the Gazebo simulator
and a non-ROS compliant application. The results of the simulation were very
good, with the optimized kick making the ball travel 6 times farther. For the
walk simulation the results were also very good, with forward speed increasing
by 50%. In both cases, the stability of the robot, represented by the maximum
acceleration of the torso section, was also reduced, compared to the original,
hand-tuned values. Future work will concentrate on bridging the reality gap be-
tween the results in simulation and the real robot. At this stage, kick scripts can

be directly ported to the robotic platform, but the reality gap remains an issue
for simulated kicks with a travelled distance greater than 2.5 meters. The walk
engine parameters will also require additional testing on the NUgus platform
before porting is successfully achieved.

References

10.

11.

. Allgeuer, P., Farazi, H., Schreiber, M., Behnke, S.: Child-sized 3d printed igus

humanoid open platform. In: IEEE-RAS International Conference on Humanoid
Robots (Humanoids). pp. 1-8 (2015)

Biddulph, A., Houliston, T., Mendes, A., Chalup, S.: Comparing computing plat-
forms for deep learning on a humanoid robot. 25th International Conference on
Neural Information Processing, LNCS 11307, 120-131 (2018)

Chalup, S., Murch, C., Quinlan, M.: Machine learning with AIBO robots in the
four-legged league of robocup. IEEE Transactions on Systems, Man and Cyber-
netics - Part C 37(3), 297-310 (2007)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182-197 (2002)

Houliston, T., Fountain, J., Lin, Y., Mendes, A., Metcalfe, M., Walker, J., Chalup,
S.: Nuclear: A loosely coupled software architecture for humanoid robot systems.
Frontiers in Robotics and AT 3:20 (2016)

Juang, C.F., Yeh, Y.T.: Multiobjective evolution of biped robot gaits using ad-
vanced continuous ant-colony optimized recurrent neural networks. IEEE Trans-
actions on Cybernetics 48(6), 1910-1922 (2017)

Mouret, J.B., Chatzilygeroudis, K.: 20 years of reality gap: A few thoughts about
simulators in evolutionary robotics. In: Proceedings of the Genetic and Evolution-
ary Computation Conference Companion. pp. 1121-1124. GECCO '17, ACM, New
York, NY, USA (2017), http://doi.acm.org/10.1145/3067695.3082052
Nygaard, T., Torresen, J., Glette, K.: Multi-objective evolution of fast and stable
gaits on a physical quadruped robotic platform. In: IEEE Symposium Series on
Computational Intelligence (SSCI). pp. 1-8 (2016)

Yi, S., Hong, D., Lee, D.: A hybrid walk controller for resource-constrained hu-
manoid robots. In: 13th IEEE-RAS International Conference on Humanoid Robots.
pp. 88-93 (2013)

Zahn, B.: Optimisation of a walk engine for a humanoid robot. Tech. rep., School
of Electrical Engineering and Computing, The University of Newcastle, Australia,
(http://github.com/NUbots/Gazebo) (2018)

Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto
evolutionary algorithm. Tech. rep., Department of Electrical Engineering,
Swiss Federal Institute of Technology, Zurich, Switzerland, (https://wuw.
research-collection.ethz.ch/handle/20.500.11850/145755) (2001)

