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Abstract. A FOrward Simulation for Situation Evaluation (FOSSE)
approach for evaluating game situations is proposed in this paper. FOSSE
approach considers multiple future situations to quantitatively evaluate
the current game situations. Since future situations are not available dur-
ing an ongoing game in real time, they are generated by what is called
forward simulation. Then the current game situation is evaluated using
the future game situations as well as the current situation itself. First,
we show the evaluation performance can be increased by using succes-
sive situations in time through preliminary experiments. Especially, the
effectiveness of using future information rather than using past informa-
tion is shown. Then, we present FOSSE approach where both the current
and the future information of game situations are used to evaluate the
current game situation. In the FOSSE approach, the future game situa-
tions are generated by forward simulation. Computational experiments
are conducted to investigate the effectiveness of the proposed approach.

Keywords: Evaluating Situation · Forward Simulation · Recurrent Neu-
ral Network · Deep Learning· Time Series Data · Soccer Simulation

1 Introduction

In sports, it is useful to perceive the superiority during a game. If the game
situation can be evaluated quantitatively, the degree of dominance for teams
can be accurately grasped. Furthermore, it is considered that the quantitative
evaluation can be applied to strategy switching guidelines in a game and to the
field of automatic live broadcasting of sports. However, quantitative evaluation
is difficult in the dynamic game situation. For this problem, we employ machine
learning method for quantitative evaluation.

As an experimental environment of this research, we use RoboCup Soc-
cer Simulation 2D League [1]. For the metric of evaluating game situation,
Nakashima and Pomas [2] proposed a metric called SituationScore which repre-
sents the degree of dominance in a soccer game. This paper also uses SituationScore
with a minor modification to evaluate the game situation.

In general, only the current situation is considered when evaluating the game
situation. However, since the game progresses dynamically, and accordingly the



situation drastically changes, especially in soccer, it is difficult to capture the
degree of the dominance in the game with only a single situation information.
In this paper, we investigate the use of multiple situations to capture the degree
of the dominance in a game.

If future information is available during a game, it is possible to evaluate the
game situation with higher accuracy than with only the current information as
well as the past information. However, such future information is not available
during an ongoing game. To solve this problem, we propose a FOrward Simula-
tion for Situation Evaluation (FOSSE) approach for learning a machine learning
model that generates future situations by simulation and then evaluates the cur-
rent situation by using the generated future situations as well as the current one
itself.

The proposed FOSSE approach consists of two parts. The first part is forward
simulation for generating the estimated future game situations. The other one
is situation evaluation for producing the value of SituationScore from the time
series of game situations. We employ a Recurrent Neural Network (RNN) as the
simulation model and a Deep Neural Network (DNN) as the evaluation model.

In the following sections, firstly, we show that the prediction accuracy of
an evaluation model can be improved by using multiple-situation information
comparing with a single-situation model. Secondly, the experiment using actual
data shows that future information is more helpful than past information in an
evaluation model. Finally, we indicate the effectiveness of the proposed method
based on FOSSE approach through computational experiments.

It should be noted that the meaning of “evaluation” in this paper is to under-
stand the field situation such as the degree of domination by a currently attacking
team and the likeliness of scoring by that team. There are other research where
the evaluation means the value of a state or an action in determining the next
action by an individual player agent. Although the situation evaluation in this
paper can also be used for such purpose in the future, this is not the focus of this
paper. We focus on the evaluation of a field situation not from the view point of
the soccer players who can only see the situation in their visual area, but from
the view point of a coach or spectators who can watch the whole soccer field.

2 Quantitative Evaluation of Game Situations in
RoboCup Soccer

We employ RoboCup Soccer Simulation 2D League [1] as the subject of study
in this paper. Generally, as a measure to represent the degree of team domi-
nance in a game, commonly used information would be the ball-possessing team
and the ball location in the soccer field. However, such simple indices cannot
accurately grasp the degree of team dominance. Therefore, another index that
quantitatively expresses the game situation is required.

Nakashima and Pomas [2] proposed SituationScore, which represents the
value of a game situation. In their work, a game situation is quantitatively eval-



uated by using time cycles until the next goal. This paper uses the same idea of
SituationScore with a minor modification.

This section first introduces the RoboCup Soccer Simulation 2D League.
Then, some modification to SituationScore is presented.

2.1 RoboCup Soccer Simulation 2D League

RoboCup [1] is a research project that focuses on the development of robotics and
artificial intelligence. There are various leagues in this project. RoboCup Soccer
Simulation 2D League is one of such leagues. It does not use real soccer robots
but simulated soccer players. The players are represented by a two-dimenional
circle as shown in Fig. 1. They play soccer in a two-dimensional virtual soccer
field that is set up on a computer. The positions of the players and the ball
are represented as a two-dimensional vector. Each player is programmed as an
independent agent unlike a video soccer game where there is one central system
that control all the objects such as all players. A game consists of 6,000 time
cycles and one cycle is discretized in 0.1 second. When the game is over, a
game log is generated in which all the game information such as the position
coordinates of the player and the ball in each cycle are included.

2.2 Modification to SituationScore

Nakashima and Pomas [2] proposed a metric called SituationScore. This metric
represents the value of a game situation. The value of SituationScore increases
as the game situation is close to the time of goal scoring. In its original definition,
the maximum value of SituationScore was 100 (when the left team scores), and
the minimum value was −100 (when the right team scores). In the original
definition of SituationScore, the superiority and inferiority of the teams are
considered for all the time steps. However, it is difficult to predict the value of
SituationScore when it is close to zero, which is a boundary situation between
the superiority and the inferiority of the teams. Due to this problem, some
changes were made to SituationScore in this paper so that the lower limit is
set to 0 assuming that SituationScore presents only the degree of dominance of
either one team. Also, because it was also difficult to correctly predict the value
of situations far from the goal, we only consider those situations where a goal is
scored within 50 time cycles. As a result, in this paper, we slightly modify the
definition of SituationScore as follows:

SituationScore(t) = 50− n, (1)

where n represents the number of remaining cycles from t until the next score.
In this paper, the range of SituationScore is 0 ≤ SituationScore ≤ +50,
which means that we only consider the goals by the left team. The value of
SituationScore for the right team can be separately defined by switching the
sign of the value (i.e., positive to negative). Figure 2 shows an example game
situation which is nine time cycles before the left team scores a goal along with
its SituationScore.



Fig. 1: Game screen of the RoboCup
Soccer Simulation 2D League.

Fig. 2: Situation that is nine time cy-
cles before the left team scores. The
value of SituationScore is +41.

2.3 Dataset

The dataset in the computational experiments in this paper was generated by
the following steps:

1. A game between HELIOS2018 [3] and agent2d [4] is performed for a specified
number of times.

2. The log files of the games are analyzed by using Python scripts to detect at
which cycles goals were scored.

3. The numerical information of the soccer field for 50 time cycles before each
goal of the left team (i.e., HELIOS2018 [3]) are recorded as well as their
corresponding SituationScore values. The recorded information is saved in
a file for each of the time cycles. The numerical information includes the
position of 22 players and the ball. The value of SituationScore is calculated
as in (1). This SituationScore value is used as the ground truth for the
situation evaluation.

A dataset containing the numerical field information for about 394,350 time
cycles was constructed from 1,000 games. This dataset was then split into three
parts as follows: training data (5, 490×50 time cycles), validation data (788×50
time cycles), and test data (1, 609 × 50 time cycles). In the rest of this paper,
we use this dataset in all experiments.

3 Situation Evaluation with Multiple Situations

3.1 Evaluation Model

This section presents the investigation into the effect of using multiple situations
on the accuracy of the trained model for situation evaluation. We employ a simple
DNN as an evaluation model of game situations. This model produces the value
of SituationScore at time cycle t. The overview of the DNN model is shown in
Fig. 3. In this figure, X is the information of the game situation such as the



position of the players and the ball. Xt is the information of the current (time
cycle t) game state. Xt−np

is the past state information (i.e., np time cycles
before the current time cycle). Xt+nf

is the future state information (i.e., nf
time cycles after the current time cycle).

Numerical experiments are conducted in the next subsection in order to eval-
uate the performance of the trained model with various combination of input
game situations.
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Fig. 3: The overview of Deep Neural Network.

3.2 Experiment

Experimental Settings The purpose of the experiments in this section is to ex-
amine the usefulness of using multiple field information with successive time cy-
cles for evaluating the field situation (i.e., predicting the value of SituationScore).
We compare the following four models with different combinations of game sit-
uations for the input of the DNN.

Model 1: Single situation (only the current game situation)
Model 2: Multiple situations (the current, past, and future game situations)
Model 3: Multiple situations (the current and past game situations)
Model 4: Multiple situations (the current and future game situations)

Each architecture is shown in Figs. 4 ∼ 7. The number of hidden layers is fixed
to 20 for all models, each hidden layer has 16 units, and the layers are fully-
connected. For the training of the DNNs, we set the batch size to 64, and used
Adam [5] optimizer with the initial learning rate = 0.001, β1 = 0.9, β2 = 0.999.
Table 1 indicates the experimental settings. The dimensionality of input data
in each situation is one of the following three types: two (the x− y coordinates
of the ball position), 24 (the x − y coordinates of the ball position and the left
team player’s positions), and 46 (the x− y coordinates of the ball position and
the all player’s positions). Past and future information of 5 time cycles are used
for Models 2, 3, and 4.
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Fig. 4: Model 1.
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Fig. 5: Model 2.
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Fig. 6: Model 3.
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Fig. 7: Model 4.

Table 1: Experimental settings.

Input data

Single situation (current)
Multiple situations (current, past, and future)

Multiple situations (current and past)
Multiple situations (current and future)

Dimensionality for one situation
2 inputs (Ball pos)

24 inputs (Ball pos, Left team’s player pos)
46 inputs (Ball pos, All player pos)

Output SituationScore

We use Mean Absolute Error (MAE) as the quality measure of the trained
model’s accuracy.

Results The experimental results are shown in Table 2. This table shows the
effectiveness of using multiple situations compared with single situation. We can
see that Model 1 with only a single situation (i.e., the current game situation) for
input produced the largest value of MAE for all experimental settings. This is
because the dominance trend in the dynamic game is captured by using multiple
situations.



In addition, the effectiveness of using future information is represented. It
turns out that future information is more effective than past information for
evaluating the game situation. It is important to consider for evaluating situa-
tion, how the game is going to develop from the current situation, not how the
game developed up to the current situation.

The advantage of using multiple situations with future information is also
demonstrated in the experimental results. Nevertheless, it has the problem in
using future information as the model’s input. That is, the problem is that the
future information is not available during ongoing game in the real time. If there
is a way to obtain future information, that would be helpful for the situation
evaluation. The next section describes the proposed method that is the solution
for this problem.

Table 2: Experimental results.
Dimensionality of one situation Model MAE

2 inputs

1 3.94
2 3.38
3 3.76
4 3.31

24 inputs

1 3.84
2 3.36
3 3.57
4 3.11

46 inputs

1 3.51
2 3.32
3 3.45
4 3.07

4 FOSSE Approach for Evaluating Field Situation

4.1 FOSSE Approach

In the last section, it was shown that using past and future multiple situations
helps enhance the performance of the trained model for situation evaluation.
Especially, using future situations produced the best accuracy among the con-
sidered four models. There is, however, a problem in real-time application that
the future information is not available during an ongoing game. To solve this
problem, we propose FOSSE (FOward Simulation for Situation Evaluation) ap-
proach. Figure 8 shows the overview of FOSSE approach. This approach consists
of two parts: forward simulation part and situation evaluation part. The forward
simulation part generates the estimation of the future information from the cur-
rent and the past game situations. Using the generated future information as
well as the past and the current field information, the situation evaluation part



produces the value of SituationScore at time cycle t. The following subsections
explain each part of FOSSE approach.

In this section, firstly, we explain forward simulation in detail. Secondly, we
explain the method to evaluate situation by FOSSE approach. Finally, the com-
putational experiments are conducted to show the effectiveness of the proposed
methods.

4.2 Forward Simulation

The forward simulation part is shown Fig. 9. The forward simulation takes the
past situations as input and generates the estimated field situation of the future.

Evaluation model     
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Fig. 8: FOSSE approach.
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Fig. 9: Forward simulation.

Recurrent Neural Network RNN is a type of neural networks that deals
with time series data through its iterative use. It takes the output vector from
the previous RNN block at time t− 1 and the game situation at time cycle t as
input. The output vector is used as the input of the next RNN block at time
t+ 1. The future game situations are simulated through the above process. This
process is called forward simulation for predicting the field situation of future
time cycles (i.e., the future game situations). This process is shown in Fig. 10.
This figure shows the process of generating the future game situation at time
cycle t+ 1 with a time series of previous game situations from time cycle t− n
to time cycle t. Each piece of information in the time series {Xt−n, . . . ,Xt} is



processed by the same block. The block is generally represented as a hidden layer
of the RNN. After the last piece of the time series is processed by the block, the
estimated next situation is generated after a fully-connected layer (FC).

Block
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Block Block
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Fig. 10: Recurrent Neural Network for forward simulation.

Related Work There are several works that are related to the forward simula-
tion using RNNs. Aida et al.[6] realized the trajectory prediction of surrounding
vehicles. They look ahead for automatic driving of vehicles. Also, in the field of
health care, Edward et al.[7] presented a work where physicians’ diagnosis and
dosing order for patients were predicted by RNNs using the vast amount of time
series data obtained from electronic medical records.

Zhiyuan et al.[8] uses Long Short-Term Memory (LSTM) [9], an extended
version of the RNN. They applied the LSTM for flight trajectory prediction. Al-
though this task seemed more difficult than simple vehicle trajectory prediction,
a high prediction performance was demonstrated. Alexandre et al.[10] tackled
the problem of tracking the people in the crowd with the LSTM by introducing
social pooling which shares the information of the neighboring persons.

In the above related works, they indicated that the RNN can successfully
predict future situations from time series data. Furthermore, they also indicated
that the effectiveness of the LSTM even in the difficult tasks. Based on these
discussions, this paper also employs the LSTM as an architecture of RNN for
the forward simulation part (i.e., we use the LSTM for the iterative block in
Fig. 10).

Experiment In the computational experiments of this subsection, we investi-
gate the accuracy of the forward simulation using the LSTM. Specifically, we
investigate the prediction accuracy of the future game situation that are gener-
ated by iteratively applying the trained LSTM. For training the LSTM model we
set batch size to 512 and used Adam optimizer [5] with the initial learning rate =
0.001, β1 = 0.9, β2 = 0.999. The LSTM generates a 512-dimensional output vec-
tor after taking a single-situation information and the output from the previous
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Fig. 11: The architecture of forward simulation by using LSTM.

LSTM block as the input for the next LSTM block. The output vector is used
as a part of input for the next LSTM.

In the computational experiments, the number of generated future field situ-
ations by the forward simulation is specified to the number of the past situations
in the input time series. Figure 11 shows this procedure. For example in the case
of four past situations, first, the four past situations Xt−4, Xt−3, Xt−2, Xt−1,
and the current situation Xt are given as the input to the model in order to
generate the estimated next situation X ′t+1. A full-connection layer (FC) is used
to generate the estimated next situation Xt+1 after processing the last piece of
the input time series. Then, X ′t+2 is predicted with another five situations of
Xt−3, Xt−2, Xt−1, Xt, X

′
t+1 (i.e., the predicted values in the last iteration).

This procedure is repeated four times to finally generate the estimated future
game situation X ′t+4. The error between the last predicted X ′t+4 and the ac-
tual value is investigated. Evaluation of the each models is made based on MAE
between the models output and the ground truth of each of the corresponding
objects’ positions.

Table 3 indicates the results of the experiment. The results show that the
prediction for three situations has less error than that for five situations. As
a matter of course, the results indicate that prediction is more difficult as the
number of situations increases, since the predicted values is repeatedly stacked
as input instead of actual values.

Table 3: Experimental results of forward simulation using LSTM.
# of situations Dimensionality of one field information MAE

Three
2 inputs 1.27
24 inputs 0.67
46 inputs 0.62

Five
2 inputs 1.89
24 inputs 1.12
46 inputs 1.34



4.3 Evaluation of Game Situations by FOSSE Approach

In Section 3, it was shown that the architecture of the DNN that uses future
information produced the best situation evaluation among the four investigated
models. Thus, we employ that type of the DNN model as an evaluation model.
Since the future information is not available during a game, we estimate it by
forward simulation that was described in Section 4.2. Moreover, based on the the
results of the computational experiments in Section 4.2, the LSTM is employed
as a forward simulation part in our FOSSE architecture. The overview of the
resultant FOSSE architecture that we employ in this paper is shown in Fig. 12.
In our FOSSE architecture, a field situation is evaluated by using the predicted
future information (i.e., X ′t+1, . . . ,X

′
t+nf

) generated by forward simulation. The
DNN model and the RNN model are separately constructed. In the forward
simulation, the LSTM model predicts the field situation of the next time cycle
as shown the bottom part of Fig. 12. Then, in the situation evaluation part,
the SituationScore of the current game situation is estimated using the current
game situation as well as the estimated future game situations that are generated
by the forward simulation.
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Fig. 12: The overview of our FOSSE architecture with DNN and LSTM.

4.4 Experiment

Experimental Settings Table 4 indicates the settings of the models that are
used in the computational experiment in this section. We compare the accuracy
performance of four trained DNN models using single situation, multiple past
situations, multiple future situations, and multiple predicted future situations
(i.e., the proposed method).



Table 4: Experimental settings of evaluating situation.

Input

Single
Past+current (Multiple-Past)

Future+current (Multiple-Future)
Predicted future+current (Multiple-Predict)

Dimensionality per situation
2 inputs (Ball pos.)

24 inputs (Ball pos. and Left team’s player pos.)
46 inputs (Ball pos. and All player pos.)

# of input situations 1, 3, 5

Results Table 5 shows the results of the experiments. It is shown that higher
accuracy is demonstrated by the proposed method than using the field situation
of a single situation. Besides, the performance of the proposed method is better
than using multiple past situations when the field situations of three successive
time cycles are used as input. As a result, it is shown that evaluation using
predicted future situations by simulation model is more useful in the situation
evaluation than using already-known past situations. Although using multiple
future situations leads to a high accuracy of the trained model, this is only ideal
because the future information is not available at the current time. Thus, using
multiple future situations is not a real option for model building in real-time
games. On the other hand, the proposed method can be used during ongoing
games because the field situation of future time cycles is generated by forward
simulation.

On the contrary, when the field situations of five successive time cycles are
used, the proposed method outperforms using single situation. This, however,
cannot show an effectiveness compared with the model using past situations.
This is considered to be due to the fact that the error of the forward simulation
model’s output increases as the number of situations increases as described in
Section 4.2. Although this paper employs a simple simulation model, it can be
expected that the accuracy will be improved by elaborating more on the forward
simulation model. The improvement of the forward simulation model is left for
our future work.

The results of the computational experiments show the effectiveness of the
proposed method that evaluates the situation combined with forward simulation.
Accurate evaluation of game situations is important for the victory in many
sports, not just in soccer. The other sports can be also benefitted by the FOSSE
approach in evaluating the game situations.

5 Conclusion

In this paper, we proposed FOSSE approach for evaluating game situation of
RoboCup Soccer Simulation 2D League. Three contributions in evalating a game
situation were presented. The first contribution is to show the effectiveness of
using the field situations of multiple time cycles rather than only a single situa-



Table 5: Experimental results (FOSSE model).

Dimensionality Input
MAE (# of time cycles)

One Three Five

2 inputs

Single 3.94 - -
Multiple-Past - 3.70 3.76

Multiple-Future - 3.33 3.31
Multiple-Predict - 3.63 3.77

24 inputs

Single 3.84 - -
Multiple-Past - 3.62 3.57

Multiple-Future - 3.35 3.11
Multiple-Predict - 3.55 3.59

46 inputs

Single 3.51 - -
Multiple-Past - 3.53 3.45

Multiple-Future - 3.28 3.07
Multiple-Predict - 3.44 4.09

tion. The second contribution is to show that future information is more valuable
than past information. The third contribution, which is the main contribution,
is to propose FOSSE approach where simulated future information was gener-
ated by forward simulation. The FOSSE approach consists of two parts: Forward
simulation part and situation evaluation part.

In our FOSSE approach, a DNN with multiple future situations was used as
the situation evaluation part, and the LSTM was used for the forward simulation
part. From the computational experiments, the effectiveness of our model was
shown. This achievement allows us to evaluate the game situation during the
ongoing game in real time. It is expected that the FOSSE approach can be
applied to other sports as well as soccer such as rugby and basket ball.

The idea of this approach is similar to human thinking processes. People often
unconsciously perform forward simulation when evaluating the situation in real
life. When humans guess SituationScore in a certain situation, it has possibility
that they consider not only the current game situation but also expected future
game situations. If it is proved that the proposed method is the same process as
human thought process, it is considered effective to reproduce human thinking
process by machine learning method.

6 Future Work

This paper conducted the computational experiments with only two teams. That
is, only two teams were involved in the generation of training and test datasets.
Considering the practical application where various teams are involved in a tour-
nament, it is necessary to show that the proposed method works in general for
any other teams. In the future, we will investigate the generalization of the pro-
posed method. That is, it is necessary to examine the performance of the trained
model to unknown teams that are not included in the generation process of the
training dataset.



Furthermore, as already mentioned in the experiments of Section 4.4, it is
necessary to consider improving the prediction accuracy of the forward simula-
tion. For instance, different architectures of the forward simulation model and
evaluation situation model can be used by increasing the number of hidden layers
or by changing the number of situations for the input. Another idea is to adapt
the FOSSE approach for accommodating field image data because it was indi-
cated in [2] that using image data could lead to a better accuracy performance
in evaluating game situations. In addition, we will consider machine learning
method that computationally realizes human thinking processes. Incorporating
human thought processes into machine learning method has the potential to
contribute to the development of artificial intelligence.

Ultimately, we would like to implement it on the RoboCup soccer team and
apply it as an indicator of tactical switching during the game. In addition to
that, we would like to apply it for enhancing the game-watching experience,
which is not related to the implementation of a team.
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