
Reusable Specification of State Machines for
Rapid Robot Functionality Prototyping

Alex Mitrevski and Paul G. Plöger

Hochschule Bonn-Rhein-Sieg, Sankt Augustin, Germany
{aleksandar.mitrevski, paul.ploeger}@h-brs.de

Abstract. When developing robot functionalities, finite state machines
are commonly used due to their straightforward semantics and simple
implementation. State machines are also a natural implementation choice
when designing robot experiments, as they generally lead to reproducible
program execution. In practice, the implementation of state machines
can lead to significant code repetition and may necessitate unnecessary
code interaction when reparameterisation is required. In this paper, we
present a small Python library that allows state machines to be specified,
configured, and dynamically created using a minimal domain-specific
language. We illustrate the use of the library in three different use cases
- scenario definition in the context of the RoboCup@Home competition,
experiment design in the context of the ROPOD project1, as well as
specification transfer between robots.

Keywords: State machines · Rapid prototyping · Experiment design.

1 Introduction

The development of robot programs requires the integration of multiple func-
tionalities that together allow a robot to perform useful tasks. Particularly for
rapid prototyping, the development process often involves the use of finite state
machines, which model the program execution by a set of states and transitions
between them. State machines are attractive for robot program creation due
to various properties, such as the fact that they can be used to make the pro-
gram execution transparent and reproducible. This is particularly important for
robot experiments, which need to be designed in a manner that allows different
experimenters to obtain the same results under similar experimental conditions.

The development of state machines differs depending on the programming
language, but most languages have dedicated libraries for defining and creating
automata2. Due to the simplicity with which state machines can be created, it
is often the case that the specification of a state machine is interleaved together

1 ROPOD is an Innovation Action funded by the European Commission under grant
no. 731848 within the Horizon 2020 framework program.

2 In Python, one such example is SMACH: https://github.com/ros/executive smach

https://github.com/ros/executive_smach


2 Alex Mitrevski and Paul G. Plöger

with the implementation3. Mixing up the specification and implementation of
a state machine has various limitations however. First of all, keeping the spec-
ification together with the implementation leads to non-reusable specifications
that are committed to a specific implementation. Furthermore, states can only
be made reusable if they can be reconfigured, but this means that direct code
changes are needed for reconfiguration, which is particularly problematic when
reusing functionalities over different robots. Having the ability to load state ma-
chines dynamically is also more reasonable in certain cases, for instance when a
robot operator needs to trigger an experiment remotely4.

In this paper, we present a Python-oriented domain-specific language for
specifying state machines as well as a small Python library that allows state
machines to be dynamically created. We then illustrate the use of the library in
three different use cases, namely (i) a pick-and-place experiment in the context
of domestic robots, (ii) a docking and elevator entering experiment for a logistic
robot, and (iii) reusing the pick-and-place state machine, but redefining a par-
ticular state for a specific robot. The limitations and possible extensions of the
library are then discussed.

2 Related Work

In the context of full robot autonomy, state machine-driven development has
various limitations, such as the lack of flexibility [12], but nevertheless, a state
machine remains an invaluable tool for rapid functionality testing. For instance,
the Amazon States Language [1] is a JSON-based state machine specification
language that, in addition to including basic specification constructs, allows
specifying conditional transitions, parallel state execution, as well as predefined
error recovery behaviours. SCXML [13] is a similar XML-based language that
also defines advanced constructs for complex state machine behaviours based on
Harel statecharts [5]. The main aspect that distinguishes our library is that we
consider the reusability of state machines and the redefinition of states. In con-
trast to language-based specifications, rcommander [11] can be used for creating
state machines graphically; however, the library is SMACH-specific and it also
does not address the reusability aspect. Bardaro and Matteucci [2] discuss the
use of the Architecture Analysis and Design Language (AADL) for robot com-
ponent modelling in the context of the Robot Operating System (ROS), though
the use of the presented framework with other middlewares is also considered.
Similarly, Li et al. [7] apply the RoboChart state machine framework [9] for mod-
elling robot programs, such that, just as in [2], the specification can be used for
code generation. Gogolla and Vallecillo [4] apply the Unified Modelling Language

3 Various such examples can be found in the main repository
of the b-it-bots@Work RoboCup team: https://github.com/b-it-
bots/mas industrial robotics/tree/kinetic/mir scenarios

4 This is for example necessary in the case of the ROPOD project, where robots need
to be deployed to a hospital [8].



Specification of State Machines for Rapid Robot Functionality Prototyping 3

(UML) and the Object Constraint Language (OCL) for robot program descrip-
tion. The Lotos New Technology (LNT) language can also be used for specifying
program behaviour and, additionally, fault diagnosis [6]. A Petri net [3] is an
alternative formalism that is particularly suited for concurrent execution. All of
these representations are formally rich, which can however make it difficult to
apply them without dedicated training. In contrast, our state machine library
is minimal and has the purpose of simplifying the process of rapid prototyping,
but it should be noted that our intention is to supplement the more powerful
frameworks, which remain essential in the context of architectural modelling and
formal verification.

3 Use Cases

To motivate our state machine specification language and library, we will con-
sider three different use cases: (i) definition and execution of a simple pick and
place scenario in the context of the RoboCup@Home competition, (ii) experi-
ment definition in the context of the ROPOD project, and (iii) state machine
transfer between different robots.

In RoboCup@Home, a common task in different scenarios is picking and
placing everyday objects. In practice, both picking and placing are error-prone
activities due to the variation of objects in domestic environments, which is why
it can be useful to investigate a robot’s performance on both tasks experimen-
tally, for instance on a common dining table. Such an experiment could involve
going to the table and scanning all objects on it, picking one of the objects, and
then placing it back at a different location. This would lead to the state machine
shown in Fig. 1a.

In the ROPOD project, robots need to transport hospital items, such as
carts and beds, between different parts of a hospital, possibly over multiple
floors. Docking to a cart and navigating into an elevator with a cart attached
are particularly interesting to consider since both actions can result in execution
failures. An experiment that verifies the operation of both actions would be one
in which a robot first has to dock to a cart and then enter an elevator, where
the assumption is that the robot docks the cart right next to the elevator. This
would be represented by the state machine shown in Fig. 1b.

The third use case we consider is that of reusing a state machine that is either
robot-independent or specified for one particular robot on a different robot. As
a concrete example, we will suppose that all states in the above pick-and-place
state machine can be implemented in a robot-independent manner, except for
the table scanning state, which needs to be reimplemented for different robots5.
The objective in this case is to avoid redefining the complete state machine
multiple times.

In the following section, we show how we specify, create, and execute state
machines such as these.

5 For instance, some robots may require taking the manipulator out of the camera’s
way before the table is scanned, while others may not.



4 Alex Mitrevski and Paul G. Plöger

(a) A state machine for a simple pick and place
experiment

(b) A state machine for a cart dock-
ing and elevator entering experiment

Fig. 1: State machines in the context of RoboCup@Home and ROPOD

4 State Machine Specification and Configuration

The general design of our Python library is illustrated in Fig. 2.

Fig. 2: Overview of the state machine specification library. A state machine is
defined in a configuration file, such that state specifications include the names
of the modules in which individual states are implemented. After a consistency
check, the state machine is dynamically created from the specification and sub-
sequently executed.

The state machine specification is at the core of the library, such that state
machines are specified in a language embedded in TOML6,7. The language allows
specifying the states in a state machine and the transitions between them, as
well as passing arguments to the individual states and the state machine as a
whole. In addition, our specification assumes that each state is implemented as

6 https://github.com/toml-lang/toml
7 An earlier prototype, which we still actively use, was based on a YAML-based spec-

ification.

https://github.com/toml-lang/toml


Specification of State Machines for Rapid Robot Functionality Prototyping 5

a separate class; the names of the modules in which states are implemented and
the names of the state classes are also specified in the configuration. A generic
state machine specification template is shown below.

Listing 1.1: Generic state machine specification

sm_id = <string >
states = <list[string]>
outcomes = <list[string]>

[state_descriptions]
[state_descriptions.STATE_NAME]

state_module_name = <string >
state_class_name = <string >
initial_state = <bool >
[state_descriptions.STATE_NAME.transitions]

transition_1_name = <string >
...
transition_n_name = <string >

[state_descriptions.STATE_NAME.arguments]
argument_1 = argument_1_value
...
argument_n = argument_n_value

...

[arguments]
argument_1 = argument_1_value
...
argument_n = argument_n_value

By specifying state modules in the specification file, a state machine can be as-
sembled and loaded on the fly8. This is accomplished in a three-step process,
namely (i) a configuration loader reads the specification, (ii) a consistency check
on the specification is performed (in particular, whether all defined states have
been declared in the state list and whether all state transitions lead to declared
states or terminal outcomes), and (iii) if the specification passes the consistency
check, it is passed on to a state machine creator, which creates the state machine
based on the provided configuration. The state machine can then be appropri-
ately executed.

To create and execute state machines, we use the SMACH library, namely
all states are implemented as SMACH states and the state machine creator
initialises an appropriate SMACH container. It should however be noted that
our library does not make any specific assumptions about the implementation
of individual states or the actual state machine - other than the requirement
that each state needs to be an individual class - which simplifies switching be-
tween state machine libraries without changing the state machine specification.
In other words, switching between state machine libraries requires a change in
the implementation, but not the specification of a state machine.

We can now illustrate how state machines can be described using our minimal
description language in the context of the previously described use cases. The
specification of the pick and place experiment9 would be given as follows:

8 In our Python library, this is achieved with the help of the importlib package.
9 An implementation using the earlier YAML-based specification can be found at

https://github.com/b-it-bots/mas execution manager; this is actively used for spec-

https://github.com/b-it-bots/mas_execution_manager


6 Alex Mitrevski and Paul G. Plöger

Listing 1.2: State machine for a simple pick and place experiment

sm_id = "simple_pick_and_place"
states = [" GO_TO_TABLE", "SCAN_TABLE", "PICK_OBJECT", "PLACE_OBJECT "]
outcomes = ["DONE", "FAILED "]

[state_descriptions]
[state_descriptions.GO_TO_TABLE]

state_module_name = "mdr_navigation_behaviours.move_base"
state_class_name = "MoveBase"
initial_state = true
[state_descriptions.GO_TO_TABLE.transitions]

succeeded = "SCAN_TABLE"
failed = "GO_TO_TABLE"
failed_after_retrying = "FAILED"

[state_descriptions.GO_TO_TABLE.arguments]
destination_locations = ["TABLE "]
number_of_retries = 3

[state_descriptions.SCAN_TABLE]
state_module_name = "mdr_perception_behaviours.perceive_planes"
state_class_name = "PerceivePlanes"
[state_descriptions.SCAN_TABLE.transitions]

succeeded = "PICK_OBJECT"
failed = "SCAN_TABLE"
failed_after_retrying = "FAILED"

[state_descriptions.SCAN_TABLE.arguments]
plane_prefix = "table"
number_of_retries = 3

[state_descriptions.PICK_OBJECT]
state_module_name = "mdr_manipulation_behaviours.

pick_closest_from_surface"
state_class_name = "PickClosestFromSurface"
[state_descriptions.PICK_OBJECT.transitions]

succeeded = "PLACE_OBJECT"
failed = "PICK_OBJECT"
failed_after_retrying = "FAILED"
find_objects_before_picking = "SCAN_TABLE"

[state_descriptions.PICK_OBJECT.arguments]
picking_surface_prefix = "table"
number_of_retries = 3

[state_descriptions.PLACE_OBJECT]
state_module_name = "mdr_manipulation_behaviours.place"
state_class_name = "Place"
[state_descriptions.PLACE_OBJECT.transitions]

succeeded = "DONE"
failed = "PLACE_OBJECT"
failed_after_retrying = "FAILED"

[state_descriptions.PLACE_OBJECT.arguments]
placing_surface_prefix = "table"
number_of_retries = 3

As can be seen in this specification, different arguments can be passed to the
states depending on the needs; for example, the GO TO TABLE state takes a
list of named locations to which the robot should go, while the PICK OBJECT
state receives the name of a surface from which the robot should grasp an object.
This state machine also has some fault tolerance in its design, such that all states
can be retried a predefined number of times before a global failure is reported.

ifying RoboCup@Home scenarios in our domestic robotics repository: https://
github.com/b-it-bots/mas domestic robotics

https://github.com/b-it-bots/mas_domestic_robotics
https://github.com/b-it-bots/mas_domestic_robotics


Specification of State Machines for Rapid Robot Functionality Prototyping 7

The specification of the docking and elevator entering experiment in the
ROPOD context is similarly shown below10:

Listing 1.3: State machine for a cart docking and elevator entering experiment

sm_id = "dock_and_enter_elevator"
states = ["DOCK", "ENTER_ELEVATOR "]
outcomes = ["DONE", "FAILED "]

[state_descriptions]
[state_descriptions.DOCK]

state_module_name = "ropod_experiment_executor.commands.dock"
state_class_name = "Dock"
initial_state = true
[state_descriptions.DOCK.transitions]

done = "ENTER_ELEVATOR"
failed = "FAILED"

[state_descriptions.DOCK.arguments]
area_id = "Area1"
area_name = "CartArea1"
dock_action_topic = "/ ropod_task_executor/DOCK"
dock_progress_topic = "/ task_progress/dock"
timeout_s = 120.0

[state_descriptions.ENTER_ELEVATOR]
state_module_name = "ropod_experiment_executor.commands.

enter_elevator"
state_class_name = "EnterElevator"
[state_descriptions.ENTER_ELEVATOR.transitions]

done = "DONE"
failed = "FAILED"

[state_descriptions.ENTER_ELEVATOR.arguments]
area_floor = 0
elevator_id = 4
elevator_door_id = 88
wait_for_elevator_action_topic = "/ ropod_task_executor/

WAIT_FOR_ELEVATOR"
enter_elevator_action_topic = "/ ropod_task_executor/

ENTER_ELEVATOR"
elevator_progress_topic = "/ task_progress/elevator"
timeout_s = 120.0

The state machine describing this experiment is slightly simpler than the one for
the pick-and-place case. What is worth noting is that the states require infor-
mation from an OpenStreetMap environment description [10], which the robot
is using for both navigation and docking. The complete workflow in ROPOD
includes triggering such experiments through a web application11; because of
this, dynamic state machine loading is particularly useful since an operator may
want to run different experiments one after the other. In addition, the separation
of the specification from the implementation makes it rather simple to visualise
the state machine, as shown in Fig. 3.

Finally, to accomplish state machine transfer, we define hierarchical relations
between state machines, such that the robot-independent state machine repre-
sents the parent and the robot-specific one the child12. When redefining a state,

10 This specification, along with various other experiment definitions, can be found at
https://github.com/ropod-project/ropod experiment executor.

11 https://github.com/ropod-project/remote-monitoring
12 Multi-level hierarchies may also be beneficial, but our current implementation does

not consider those.

https://github.com/ropod-project/ropod_experiment_executor
https://github.com/ropod-project/remote-monitoring


8 Alex Mitrevski and Paul G. Plöger

Fig. 3: Visualisation of the docking and elevator entering state machine. The
green node denotes the currently active state, which is known due to the fact
that the states continuously advertise their status.

in principle we only need to modify the module and class names of the robot-
specific state implementation; redefining the state transitions and arguments is
possible as well, but not mandatory. In addition, the global state machine param-
eters, such as the name and list of states, can be modified as well. A redefinition
of the SCAN TABLE state for a specific robot can be done as shown below.

Listing 1.4: Robot-specific state redefinition in the pick-and-place state machine

sm_id = "robot_specific_simple_pick_and_place"

[state_descriptions]
[state_descriptions.SCAN_TABLE]

state_module_name = "my_robot_perception_behaviours.perceive_planes"
state_class_name = "PerceivePlanes"
[state_descriptions.SCAN_TABLE.arguments]

arm_position = "folded"

In the above redefinition, we specify a new implementation for the SCAN TABLE
state and add an additional input argument that is specific to the new state.

It should be noted that we currently define hierarchical relations between
state machines by specifying the paths to the parent and child state machines
as ROS node parameters; this is thus the only ROS-dependent aspect of our
library.

5 Discussion and Future Work

As described above, the state machine library presented in this paper is actively
used and maintained in different contexts, but there are various potential im-
provements that can be made. First of all, as mentioned before, the definition of
hierarchical relations between state machines is currently ROS-dependent and



Specification of State Machines for Rapid Robot Functionality Prototyping 9

is performed by specifying the paths of the state machine configuration files as
ROS node parameters; ideally, this should be dealt with in a ROS-independent
manner, thus eliminating the dependency on ROS. A more significant issue is
that the language does not allow specifying concurrent states, which are however
necessary in practice since a robot should be able to perform multiple activities
in parallel, such as perception and manipulation for active grasping or docking to
a charging station. The ability to specify multi-level state machines hierarchies
would also be a useful extension since that would further improve the reusability
of state machines. Finally, an interesting use of the library would be applying
the configuration language to an automated testing scenario, in particular using
it as a means to generate test state machines that a robot needs to execute,
potentially in a simulated environment.

Acknowledgements We gratefully acknowledge the support by the b-it Inter-
national Center for Information Technology. We would like to thank Argentina
Ortega and Minh Nguyen for various suggestions about the library, the rest of
the members of the b-it-bots@Home RoboCup team for its early adoption, as
well as Dharmin Bakaraniya for actively contributing to the development.

References

1. Amazon.com: Amazon States Language, https://states-language.net/spec.html

2. Bardaro, G., Matteucci, M.: Using AADL to Model and Develop ROS-Based
Robotic Application. In: 2017 1st IEEE Int. Conf. on Robotic Computing (IRC).
pp. 204–207 (Apr 2017)

3. Costelha, H., Lima, P.: Modelling, analysis and execution of robotic tasks using
petri nets. In: 2007 IEEE/RSJ Int. Conf. Intelligent Robots and Systems. pp.
1449–1454 (Oct 2007)

4. Gogolla, M., Vallecillo, A.: (an example for) formally modeling robot behavior with
uml and ocl. In: Software Technologies: Applications and Foundations. pp. 232–246
(2018)

5. Harel, D.: Statecharts: a visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

6. Hofer, B., Mateescu, R., Serwe, W., Wotawa, F.: Using LNT Formal Descriptions
for Model-Based Diagnosis. In: 29th Int. Workshop Principles of Diagnosis DX’18
(2018)

7. Li, W., Miyazawa, A., Ribeiro, P., Cavalcanti, A., Woodcock, J., Timmis, J.:
From Formalised State Machines to Implementations of Robotic Controllers. CoRR
abs/1702.01783 (2016)

8. Mitrevski, A., Thoduka, S., Ortega Sáinz, A., Schöbel, M., Nagel, P., Plöger, P.G.,
Prassler, E.: Deploying robots in everyday environments: Towards dependable and
practical robotic systems. In: 29th Int. Workshop Principles of Diagnosis DX’18
(2018)

9. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J.:
RoboChart: modelling and verification of the functional behaviour of robotic ap-
plications. Software & Systems Modeling pp. 1–53 (Jan 2019)

https://states-language.net/spec.html


10 Alex Mitrevski and Paul G. Plöger

10. Naik, L., Blumenthal, S., Huebel, N., Bruyninckx, H., Prassler, E.: Semantic map-
ping extension for OpenStreetMap applied to indoor robot navigation. In: IEEE
Int. Conf. Robotics and Automation (ICRA) (2019)

11. Nguyen, H.: rcommander core, http://wiki.ros.org/rcommander core
12. Shpieva, E., Awaad, I.: Integrating Task Planning, Execution and Monitoring for

a Domestic Service Robot. Information Technology 57(2), 112–121 (Mar 2015)
13. World Wide Web Consortium (W3C): State Chart XML (SCXML): State Machine

Notation for Control Abstraction, https://www.w3.org/TR/scxml/

http://wiki.ros.org/rcommander_core
https://www.w3.org/TR/scxml/

	Reusable Specification of State Machines for Rapid Robot Functionality Prototyping

