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Abstract. For robots acting - and failing - in everyday environments,
a predictable behaviour representation is important so that it can be
utilised for failure analysis, recovery, and subsequent improvement. Learn-
ing from demonstration combined with dynamic motion primitives is
one commonly used technique for creating models that are easy to anal-
yse and interpret; however, mobile manipulators complicate such models
since they need the ability to synchronise arm and base motions for
performing purposeful tasks. In this paper, we analyse dynamic motion
primitives in the context of a mobile manipulator - a Toyota Human Sup-
port Robot (HSR)- and introduce a small extension of dynamic motion
primitives that makes it possible to perform whole body motion with
a mobile manipulator. We then present an extensive set of experiments
in which our robot was grasping various everyday objects in a domes-
tic environment, where a sequence of object detection, pose estimation,
and manipulation was required for successfully completing the task. Our
experiments demonstrate the feasibility of the proposed whole body mo-
tion framework for everyday object manipulation, but also illustrate the
necessity for highly adaptive manipulation strategies that make better
use of a robot’s perceptual capabilities.

Keywords: Learning from demonstration · Dynamic motion primitives
· Whole body motion · Everyday object manipulation · Toyota HSR.

1 Introduction

When acting in complex everyday environments, robots are prone to experienc-
ing failures. For instance, Fig. 1 illustrates two failure examples with our Toyota
Human Support Robot (HSR)1,2, namely failures in grasping an object from a
table and placing it on a confined shelf.

1 https://www.toyota-global.com/innovation/partner robot/robot/
2 We call our HSR Lucy, hence the title.

https://www.toyota-global.com/innovation/partner_robot/robot/
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(a) A toy about to slip out of the gripper (b) The robot knocks down a yogurt cup

Fig. 1: Unsuccessful attempts at grasping and placing an object

Failures such as these can be caused by various factors [18], for instance in-
complete knowledge about the environment or sensory limitations. Regardless of
the causes, robots should have the ability to not only recover from such failures,
but also use those as learning opportunities in order to improve. In practice, this
is usually difficult to achieve, often due to limitations of the paradigm with which
robot programs are created. For instance, the problem of planning manipulation
trajectories for performing a specific manipulator motion is generally complex
and can be solved by randomly searching for feasible solutions3, which however
makes it difficult to predict and analyse the behaviour of a robot. Particularly
in the context of manipulation, learning from demonstration [2] is a popular
alternative to randomised planners and complex manipulation models that aims
to replace explicitly programmed motion models by a process in which feasible
and predictable motions are demonstrated to a robot by a human demonstrator.

In this paper, we study the problem of learning from demonstration in the
context of domestic robots by considering the dynamic motion primitive (DMP)
framework [6] for representing manipulator trajectories. Dynamic motion prim-
itives encode demonstrated motion trajectories by a dynamic model, often in
Cartesian space with respect to a manipulator’s end effector. Such an explicit
representation is beneficial when considering failures and failure analysis since a
motion primitive in this format can be used as a predictive model of a robot’s
behaviour. Domestic robots are however mobile manipulators in principle, so a
representation of pure manipulator trajectories is generally insufficient for exe-
cuting purposeful tasks; instead, such robots need to synchronise arm and base
motions. We thus present a minor extension to motion primitives that allows
whole body motion of a robot, such that arm motions are favoured whenever
possible, but base motions are introduced when a manipulator is unable to move
anymore without reaching a singular configuration.

To validate the feasibility of our whole body motion framework, we present
an extensive set of experiments in which a Toyota HSR was grasping various
everyday objects in a common domestic environment. The experiments evaluate

3 One popular example is the MoveIt! library https://moveit.ros.org, which provides
a seamless interface to the Open Motion Planning Library (OMPL) http://ompl.
kavrakilab.org/core/.

https://moveit.ros.org
http://ompl.kavrakilab.org/core/
http://ompl.kavrakilab.org/core/
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the whole body motion framework in a scenario in which the robot had to grasp
objects from tables with two different heights, such that, due to the variation of
object poses, arm motion was sufficient for success in some of the trials, while
whole body motion was required in others.

2 Related Work

Learning from demonstration [2][10] is a popular technique for robot knowledge
acquisition where the aim is to let a robot learn an execution policy by general-
ising over one or more demonstrations by an expert operator. In the context of
manipulation, such policies are often based on a representation of motion primi-
tives. Motion primitives can be represented in different manners, such as combi-
nations of basis functions extracted by performing principal component analysis
on a set of demonstrations [11], distributions over trajectories [16], dynamic
equations [6], as well as neural networks [4]. In this work, we use the dynamic
motion primitive representation due to its easy interpretability and predictive
nature, but also because of the potential to improve such learned models using
reinforcement learning [9] and create sequences of complex motions by combin-
ing individual motion primitives together [12]. In this paper, we analyse motion
primitives in the context of grasping everyday objects in a common domestic
environment, such as the objects used in the RoboCup@Home competition [14],
such that we synthesise grasps based on 3D object representations using point
cloud data [3].

3 Methodology

3.1 DMP Preliminaries

In the dynamic motion primitives framework [6], a motion trajectory is repre-
sented by a second-order differential equation of the form

τ ÿ = α (β(g − y)− ẏ) + f (1)

where τ is a time constant that can be used for controlling the motion duration,
α and β are positive constants, g is a motion goal, y is the current state of the
system, and f is a forcing term. This equation converges to g if the forcing term
vanishes, such that by varying the forcing term, arbitrary trajectories can be
represented with the above model. Dynamic motion primitives can be learned,
where learning reduces to finding a model of the forcing term that describes the
desired motion; the model should ensure that the forcing term eventually tends
to zero so that the system can converge to the desired goal. Motion primitives
are usually learned from demonstrations, which is what we also do here.

In their general form, DMPs are robot-independent, as they represent trajec-
tories in Cartesian space; the conversion to joint motion commands is done by
an inverse kinematics solver. In other words, given a Cartesian velocity vector
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ẏ = J q̇, where J is the manipulator Jacobian and q̇ is a vector of joint velocities,
we can find the joint velocity vector as

q̇ = J−1ẏ (2)

Particularly for non-redundant manipulator, singular solutions of the above
equation are likely in practice. To handle the singularities of such manipula-
tors, we use the weighted damped least squares method [21][15] to determine
the joint velocities.

DMPs themselves do not provide a direct way of dealing with kinematic and
dynamic constraints on the robot joints, which have to be dealt with at the con-
trol level. In practice, this is not as significant an issue as it might seem due to
two main reasons: (i) a primitive generated from a demonstrated trajectory gen-
erally represents feasible reproducible motions (though this is largely determined
by the manner in which trajectories are demonstrated [2]); (ii) a primitive-based
policy is often not used directly, but is improved in a reinforcement learning
scenario [9]. What is a practical issue however, particularly in the context of
domains such as domestic robotics, is the fact that g is likely to lie outside the
dexterous workspace of a robot’s manipulator (for instance, a robot may need
to grasp a table object that is not reachable from the robot’s current position);
in such cases, a motion primitive on its own is clearly insufficient for performing
a task.

3.2 Combining DMPs and Whole Body Motion

Considering that we work with mobile robots, we overcome this problem by using
a whole body motion framework that performs only arm motions when the ma-
nipulator Jacobian is well-conditioned, but introduces motion of the robot’s base
when the Jacobian is nearing a singularity. Near-singularities of a manipulator
can be detected by monitoring the smallest singular value σmin of the Jacobian J
defined above, which tends to zero in such configurations [8]; this follows directly
from the fact that the condition number of a matrix is given by the ratio σmax

σmin
,

such that singular or near-singular matrices have a large condition number.
The distribution of linear velocities amongst the mobile base platform and

the end effector is governed by the following relations:

mcap =
σmin − σl
σh − σl

(3)

vee = mcapv (4)

vb = (1−mcap)v (5)

where mcap is what we call a capability coefficient of the manipulator, σmin
is the smallest singular value of J , σl is a lower threshold on σmin

4, σh is an

4 This value is experimentally tuned in such a way that the manipulator remains away
from singular configurations.
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upper threshold on σmin
5, v is the desired linear velocity of the end effector in

the global frame of reference, vee is a velocity command for the end effector,
and vb is a velocity command for the mobile base. Here, it should be noted
that the motion of the base is introduced only when σmin drops below σh. In
a similar fashion, it is possible to incorporate limitations of the base motion,
such as obstacles sensed by a distance sensor, in a modified version of the above
policy to ensure safe base motion.

As mentioned above, the desired end effector velocities are converted to joint
velocities using an inverse kinematics solver6. The obtained joint velocity are
then interpreted by a low-level joint velocity controller, which performs the ac-
tual joint motions. Base velocity commands are similarly interpreted by the
robot’s base velocity controller.

3.3 Demonstrating and Learning Motion Primitives

Learning from demonstration can be done in various different ways, all of which
impose different constraints on the robot and demonstrator [2]. In the context of
this work, we use external observations for recording motion primitives, namely
we record the motion of a demonstrator using a camera placed on the robot,
which tracks the position of an ArUco marker board [5]. The demonstration
process is illustrated in Fig. 2.

By recording the board poses at a predefined frequency, we obtain a set of
n points D = {di | di ∈ R6, 1 ≤ i ≤ n}. D is thus a representation of the
demonstrated trajectory in Cartesian space, which is then used for learning the
forcing term of a motion primitive. As done in [6], we represent the forcing term
as a sum of weighted basis functions

f(x) =

∑k
i=1 Ψi(x)wi∑k
i=1 Ψi(x)

x(g − y0) (6)

where y0 is the initial position, g is the goal, wi are weights that need to be
learned, and each Ψi(x) has the form

Ψi(x) = exp

(
− 1

2σ2
i

(x− ci)2
)

(7)

such that the weighting terms are learned using weighted linear regression.
It should be noted that we learn a separate primitive for each Cartesian di-

mension, which means that a complete motion primitive is a combination of six
dimension-specific primitive motions that need to be followed together when the
motion has to be reproduced. Here, it is important to mention that we actually
only control the position of the end effector, which means that the orientation

5 The value of σh is also experimentally tuned and prevents the introduction of base
motions prematurely.

6 https://github.com/b-it-bots/mas common robotics/tree/kinetic/mcr
manipulation/mcr arm cartesian control

https://github.com/b-it-bots/mas_common_robotics/tree/kinetic/mcr_manipulation/mcr_arm_cartesian_control
https://github.com/b-it-bots/mas_common_robotics/tree/kinetic/mcr_manipulation/mcr_arm_cartesian_control
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Fig. 2: DMP demonstration by observing an ArUco marker board

primitives are not taken into account at runtime, but this is only because the
external observation method makes it difficult to represent the orientation rea-
sonably; using a different demonstration method, such as kinesthetic teaching
[2], would make it possible to use those in practice as well7.

3.4 Purposeful Manipulation in Domestic Environments

We represent manipulation trajectories using motion primitives that can be
demonstrated and learned in order to have a predictable and generalisable model
that allows a robot to perform tasks in a domestic environment. In particu-
lar, assuming that we have m motion primitives Mi, 1 ≤ i ≤ m and s skills
Sj , 1 ≤ j ≤ s, we associate each Mi with a skill Sj , where this mapping need
not be a bijective one; in particular, each Mi can be associated with multiple
skills (for instance, a single primitive can be used for grasping and placing), but
also each Sj can utilise multiple primitives (for instance, we could have multiple
grasping primitives that change depending on the context)8.

As can be noticed above, the representation of motion primitives we apply
does not directly use any dynamic information about the environment, such as

7 An implementation of the complete DMP learning and execution workflow can be
found at https://github.com/b-it-bots/ros dmp

8 Our implementation that currently only makes use of a single dynamic primitive
per skill is embedded into our domestic robotics architecture: https://github.com/
b-it-bots/mas domestic robotics

https://github.com/b-it-bots/ros_dmp
https://github.com/b-it-bots/mas_domestic_robotics
https://github.com/b-it-bots/mas_domestic_robotics
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obstacles that are in the way of a robot. We do not deal with such factors in
this paper, but note that information about obstacles can be incorporated in the
form of repulsive fields [17]. We consider this to be an essential future extension
for the practicality of our framework in complex everyday scenarios.

4 Evaluation

To evaluate motion primitives for performing purposeful tasks in the context of
domestic robots, we recorded a grasping primitive for a Toyota Human Support
Robot (HSR) and performed a set of grasping experiments in which the robot
had to grasp objects from two different surfaces - an ordinary dining table and
a living room table9. To detect objects, we used the SSD object detector [13]
trained on the COCO dataset; our experimental evaluation is not concerned
with recognising objects, so the pretrained model suffices for our purpose and
we did not retrain it on a new dataset. For calculating the object poses, we used
a grasp synthesis method that assumes a fixed grasping orientation (resulting in
a sideways grasp) and determines the position of the object to be grasped from
the object’s point cloud by averaging the positions of the points:xy

z

 =

 1
N

∑o
i=1Oxi

1
N

∑o
i=1Oyi

1
N

∑o
i=1Ozi

 (8)

where O is the object’s point cloud and o is the number of points10.
The experimental setup was the same for both surfaces, namely a single

object was placed on the surface, such that the robot had to (i) detect the
object, (ii) determine its pose, (iii) choose a grasping pose, and (iv) execute
a grasping motion using the previously recorded motion primitive. The pose
of the object was varied in each experimental trial; in some of the trials, the
robot could reach the object with pure arm motion, while the object was out
of reach and thus whole body motion was required in all other trials. Runs
in which the object could not be detected were repeated until the object was
found. Due to the design of the HSR, the robot has to align with the object
before performing a grasping motion; in addition, the arm goes to a pregrasp
position before executing a motion primitive, such that two different pregrasp
positions were used depending on the surface. The sequence of steps for grasping
an object on the dining table is depicted in Fig. 3.

The overall experimental setup is illustrated in Fig. 4, such that we used
the objects in Fig. 5 for evaluation. We performed 10 experimental trials per
object; this resulted in 150 trials per surface or 300 trials in total. Trials in
which the object was grasped and remained in the gripper until manual removal

9 A video of an earlier trial run of our experiment can be found at https://www.
youtube.com/watch?v=OC7vttt4-Jo.

10 Further details about our perception pipeline can be found at https://github.com/
mas-group/mas tutorials

https://www.youtube.com/watch?v=OC7vttt4-Jo
https://www.youtube.com/watch?v=OC7vttt4-Jo
https://github.com/mas-group/mas_tutorials
https://github.com/mas-group/mas_tutorials
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(a) The pose of the object
is detected first

(b) The robot then aligns
with the object

(c) The arm goes to a pre-
grasp configuration

(d) The object is grasped by applying
whole body motion

(e) The arm retrieves back to a safe
configuration

Fig. 3: Object grasping sequence

were considered successful provided that the manipulator did not have a strong
collision with the table; trials in which there was a collision or the object was
not grasped successfully were counted as failures.

(a) Dining table (b) Coffee table

Fig. 4: Setup and objects used in the grasping experiments. In the case of the
coffee table, the white board was placed in order to block out some reflections
due to bad lighting conditions. In both cases, only one object at a time was
placed at different positions on the table, such that the robot had to detect the
object, estimate its pose, and then grasp it (10 times for each object and surface
combination), resulting in 300 grasping experimental trials in total.
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(a) Noodles (b) Salt box (c) Light ball (d) Duct tape (e) Coffee cup

(f) Cup (g) Mug (h) Toy (i) E-stop (j) Sponge

(k) Bowl (l) Stress ball (m) Cookies (n) Shampoo (o) Pringles

Fig. 5: Objects used in the grasping experiments

Plots of representative planned and executed trajectories when grasping the
noodle box are shown in Fig. 6. As can be seen there, the executed trajectories
do not exactly match the predicted trajectories, although this can be tolerated
in most practical scenarios.

Fig. 6: Planned and executed DMP-based trajectories by the Toyota HSR in the
noodle box grasping experiment

The results of the baseline grasping experiment are shown in Table 1.
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Table 1: Successful grasps in the grasping experiment (out of 10)

Object
Surface

Dining table Coffee table

Noodles 5 9

Salt box 10 4

Light ball 10 0

Duct tape 9 10

Coffee cup 9 10

Cup 9 10

Mug 7 10

Toy 8 7

E-stop 4 0

Sponge 10 9

Bowl 7 9

Stress ball 10 10

Cookies 8 10

Shampoo 10 8

Pringles can 6 9

Total successful 122 115

A large number of failed attempts in the experiments were caused by a slip
of the object due to an incorrectly detected object pose; for instance, this was
the case for the bowl when turned upside down, the mug and noodle box on
the dining table, as well as the shampoo on the coffee table. Occasional failures
were due to collisions with the table that triggered a safety stop. While grasping
the e-stop, most failures were due to the fact that the object is too low for a
sideways grasp; on the coffee table, neither the e-stop nor the light ball could
be grasped due to this issue. Failures such as these clearly indicate the necessity
for a more general grasp planner that is able to adapt based on the context
and task; for instance, a top-down grasp is more suitable for objects such as the
emergency stop and the light ball, as a sideways grasp is clearly suboptimal for
such objects. During the experiments, we additionally noticed a degradation of
the arm controller over time, but our experimental results are not affected by this
phenomenon since this effect was abstracted away by resetting the controller.

5 Discussion and Future Work

The evaluation of dynamic motion primitives extended with a whole body mo-
tion policy has shown the feasibility of the approach for everyday object manip-
ulation with a mobile manipulator, but has also illustrated various limitations
of the framework as presented here that need to be addressed for increasing
the method’s practical applicability. As would be expected, the quality of the
demonstrated motion primitive significantly affects the motion executed by the
manipulator. We have found that the method based on recording trajectories us-
ing external observations is not ideal since it requires a trial-and-error procedure
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for finding a suitable primitive; we are thus investigating ways to use admittance
control for demonstrating trajectories using kinesthetic teaching.

As illustrated by the experimental analysis, motion primitives can be reason-
ably generalised, but there are natural limits to the generalisation capabilities.
In our experiments, the motion primitive was originally recorded for manipula-
tion on the dining table, where a concave trajectory is executed, while a convex
trajectory is needed for manipulation on the coffee table. In order to generalise
the primitive, we manually specified two different pregrasp positions of the ma-
nipulator for the two tables, but an adaptive strategy that automatically selects
pregrasp positions and motion primitives is needed for fully autonomous opera-
tion; various ideas in this direction are presented in [20]. As discussed before, it
is also necessary to consider dynamic information about the environment, such
as obstacles and external forces acting on the robot during the execution of
trajectories, in order to increase the practical usefulness of primitive-based exe-
cution. Improving faulty motion primitives based on corrective demonstrations
[7] and teacher feedback [1] is another possible extension. Finally, our primary
motivation for using motion primitives is having a model that can be used for
detecting and diagnosing robot execution failures; a consistency-based method
as discussed in [19] provides some ideas for that, although its direct applicability
needs to be investigated in a separate study.

6 Conclusions

In this paper, we analysed learning from demonstration in general as well as
the use of dynamic motion primitives for representing motion trajectories of a
mobile manipulator in particular and investigated the framework in the context
of a specific mobile manipulator - a Toyota Human Support Robot. To allow
executing trajectories that require synchronised arm and base motion, we dis-
cussed a small extension of manipulation-only motion primitives to whole body
motion using which motions of a mobile base are introduced if the manipulator
is approaching a singular configuration. We additionally presented an extensive
set of experiments in which the robot was grasping different everyday objects
in a common domestic environment. Future work will address the manner in
which trajectories are demonstrated to the robot, but the adaptation of primi-
tives to different contexts and tasks as well as the use of primitives for predicting
execution failures need to be studied as well.
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