
Collision Avoidance for Indoor Service Robots
through Multimodal Deep Reinforcement

Learning

Francisco Leiva1, Kenzo Lobos-Tsunekawa1, and Javier Ruiz-del-Solar1,2

1 Department of Electrical Engineering, Universidad de Chile, Chile
2 Advanced Mining Technology Center (AMTC), Universidad de Chile, Chile

{francisco.leiva, kenzo.lobos, jruizd}@ing.uchile.cl

Abstract. In this paper, we propose an end-to-end approach to endow
indoor service robots with the ability to avoid collisions using Deep Rein-
forcement Learning (DRL). The proposed method allows a controller to
derive continuous velocity commands for an omnidirectional mobile robot
using depth images, laser measurements, and odometry based speed es-
timations. The controller is parameterized by a deep neural network,
and trained using DDPG. To improve the limited perceptual range of
most indoor robots, a method to exploit range measurements through
sensor integration and feature extraction is developed. Additionally, to
alleviate the reality gap problem due to training in simulations, a sim-
ple processing pipeline for depth images is proposed. As a case study
we consider indoor collision avoidance using the Pepper robot. Through
simulated testing we show that our approach is able to learn a pro-
ficient collision avoidance policy from scratch. Furthermore, we show
empirically the generalization capabilities of the trained policy by test-
ing it in challenging real-world environments. Videos showing the be-
havior of agents trained using the proposed method can be found at
https://youtu.be/ypC39m4BlSk.

1 Introduction

Collision avoidance is an indispensable ability in mobile robotics. Avoiding a
wide range of both static and dynamic obstacles is a key requirement for safe
autonomous navigation, autonomous exploration, and multi-agent coordination.
Classical formulations to address the collision avoidance problem often consist of
several subsystems interacting in a modular fashion. These subsystems extract
and process information from the environment, and then use it to plan and
execute collision-free trajectories. The main problem that arises when utilizing
these classical, modularized systems is that they generally have many adjustable
parameters, whose tuning is time consuming and strongly environment-specific.

In this work, we present an end-to-end approach to endow a mobile robot
with the ability to avoid collisions using Deep Reinforcement Learning (DRL).
The proposed method allows a controller to derive continuous velocity commands
for an omnidirectional mobile robot using depth images, odometry based speed

https://youtu.be/ypC39m4BlSk

2 F. Leiva et al.

estimations, and laser measurements as inputs. The latter are incorporated de-
spite the use of depth cameras in order to increase the robot’s field of view, thus,
improving the observability of the problem. The controller is parameterized by
a multimodal neural network and trained using the Deep Deterministic Policy
Gradient (DDPG) algorithm [8].

We consider perceptual restrictions commonly found in robots equipped with
depth and laser sensors. Consequently, we address the limited observability
caused by these restrictions by adding Long Short-Term Memory (LSTM) [4]
layers to the controller’s network architecture [10]. To further enhance observ-
ability, instead of directly using laser measurements as inputs, these readings are
aggregated in time as a point-cloud during the policy execution, and handled in
a way similar to that proposed in PointNet [14].

As large amounts of data are required to learn a proficient collision avoidance
policy, we use the Gazebo simulator [7] for the training process, and then directly
transfer the trained controller to a real-world platform by leveraging on ROS [15]
interfaces. Because of the aforementioned procedure, we also address the reality
gap problem that arises due to the mismatch between simulated and real sensor
measurements. In this regard, we use a simple processing pipeline to reduce the
differences between simulated and real depth images.

As a case study, we consider indoor collision avoidance using the Pepper
robot[12], currently the official Social Standard Platform of the RoboCup@Home
competition. The Pepper robot has a 3D sensor on its head, and three fixed
laser range finders near its omnidirectional base, which provide sparse range
measurements. These sensors provide noisy, short-ranged perception, and are
used as inputs to the trained collision avoidance controller.

Through simulated and real-world testing, we show that our approach is ca-
pable of learning an effective collision avoidance policy from scratch through
DRL. Furthermore, we show that the obtained controller is robust to noisy sen-
sors, and is able to behave adequately when deployed in unseen environments.

The main contributions of this work are the following: (i) An efficient ap-
proach to train a robust collision avoidance policy in an end-to-end manner. (ii)
A novel method to exploit range measurements through sensor integration and
feature extraction (akin to PointNet) for a DRL application. (iii) The utilization
of a depth image preprocessing pipeline and its validation as a means to improve
the performance of the deployed policy in the robot, by reducing the reality gap.

2 Related Work

Obstacle avoidance and similar tasks have been solved by a variety of methods
for a long time, with machine learning based methods taking the lead in perfor-
mance and popularity [5,10,23,17,18]. Methods that rely on labeled data, such as
imitation learning, usually require huge amounts of supervised data that is cum-
bersome to obtain [23,17]. Furthermore, such methods usually limit the system’s
performance to the ability of the supervisor. On the other hand, DRL-based
methods do not require labeled data and are unbounded by the performance

Collision Avoidance through Multimodal DRL 3

of a supervisor; however, they require large quantities of interactions with the
environment to produce good results. Although there are several works on DRL
for obstacle avoidance, they either use laser measurements or depth images (thus
limiting both performance and applicability) [18,5,21,20], use simplistic environ-
ments (halls and fixed environments) [21,20,5], or even fail to converge using just
sparse laser measurements [20]. In contrast, we use a multimodal DRL approach
[9,13], using both depth images and sparse laser measurements, and consider
complex training and validation scenarios.

In some case studies, such as trivial environments, hallways, and some mazes,
visual clues and patterns are enough to infer information about regions outside
the agent’s perceptual range. However, generally, the limitations of such con-
strained perception must be addressed. A simple approach to overcome the par-
tial observability produced by a limited perceptual range is simply adding more
sensors and integrating them using multimodal strategies. However, this method
is not always feasible due to physic or monetary contraints. Another common
strategy is using recurrent neural networks to alleviate the partial observability
[10]. In this work we complement this strategy by integrating sensor readings at
different time steps, which allows us to keep a representation of areas outside
the perceptual range, while also increasing the density of the measurements.

Finally, we also address the issue of transferring policies trained in simulations
to the real world (reality gap) from the perspective of the mismatch between
simulated and real observations. Increasingly popular methods to produce real-
like observations rely on generative strategies [22], which require labeled data
that in the case of depth sensors is difficult or impossible to obtain. Another
standard method to produce realistic observations consists of the study of noise
and artifact models of 3D sensors [21,11]. In this work, we use a simple pipeline
to reduce the mismatch between simulated and real depth images, based on some
of the ideas introduced in [6].

3 Preliminaries

We consider the standard RL framework, in which an agent interacts with an
environment E in discrete time steps. At each discrete time step t the agent
observes ot, picks an action at, and receives a scalar reward rt. In most real
world settings the environment E is partially observed, so the entire history of
observation-action tuples may be required to describe the current state st, that
is, st = (o1, a1, ..., ot, at).

The environment E is modeled as a Markov Decision Process (MDP) with
a state space S, an action space A, transition dynamics p(st+1|st, at), and a
reward function r(st, at). The agent’s behavior is determined by a policy which
may be either stochastic π(at|st) = P(a|s) or deterministic a = π(s).

The return Rt =
∑T
i=t γ

i−tr(si, ai) is defined as the total discounted future
reward at time step t, being γ ∈ [0, 1] the discount factor, and T a finite time
horizon. The goal in RL is to learn a policy that maximizes the expected return
starting from an initial state: E(ri,si)∼E,ai∼π[R1].

4 F. Leiva et al.

4 Collision Avoidance for the Pepper Robot

Collision avoidance can be treated as a sequential decision making problem,
where an agent has to navigate through a given environment while avoiding
static and dynamic obstacles. In this case we consider indoor environments, and
the Pepper robot as the physical agent. To solve this problem using the RL
framework we formulate it as an MDP. Namely, the state space S, action space
A, and reward function r(st, at) are designed in an ad-hoc fashion.

For the state space we consider processed sensor readings (depth images and
laser measurements) and normalized odometry based speed estimations. While
depth images are processed primarily to bridge the reality gap due to training in
simulations (see Section 4.1), laser measurements are processed to address the
limited perception range of the robot (see Section 4.2).

Like several other works on collision avoidance through DRL [5,21,17], veloc-
ity commands are used to control the agent. Since Pepper has an omnidirectional
mobile base, an action at time t is defined by the tuple at = (vtx, v

t
y, v

t
θ), where

vtx and vty correspond to the robot’s instantaneous linear speeds in the x and
y-axis, whereas vtθ to its angular speed around the z-axis.

The reward function is designed based on several agent’s desirable behaviors
when interacting with the environment. To encourage navigation through safe,
collision-free regions, the reward defined in Equation 1 is utilized.

rt =


vtx
vmax
x

cos

(
π

2

Kt
vθ

vmax
θ

)
vtx ≥ 0

vtx
vmax
x

vtx < 0

(1)

The variables vmax
x and vmax

θ correspond to the maximum values for vx and
vθ, whilst Kt

vθ
is defined in Equation 2.

Kt
vθ

= min
{

max
{∣∣vtθ∣∣ , ∣∣vtθ − vt−1

θ

∣∣} , vmax
θ

}
(2)

To prevent the agent from getting dangerously close to obstacles, a punish-
ment signal is provided according to Equation 3, where ltmin denotes the distance
to the nearest obstacle according to the processed laser measurements at time t,
and K is a constant set to 1.5. A stronger punishment rt = −10 is given to the
agent whenever it fails to avoid an obstacle.

rt = K(ltmin − 1), ltmin < 0.6 (3)

In this work, the collision avoidance problem is modeled as an episodic task,
where an episode ends when the robot collides, or when a fixed number of time
steps is reached. To encourage generalization, each episode has randomized initial
poses for the robot and most of the obstacles of the environment.

Collision Avoidance through Multimodal DRL 5

4.1 Depth Images Processing

There is a big difference between simulated depth images and those obtained
from the Pepper’s 3D sensor. Simulated depth images obtained from Gazebo
are ideal, completely noise-free and undistorted. Pepper’s 3D sensor readings,
on the contrary, usually have many patches of lost, mixed and noisy pixels, and
present a clear distortion in the predicted relative distance to some objects. Due
to this mismatch, directly transferring the trained policy in simulations to the
real world would be unfeasible.

To solve the aforementioned issue, both simulated and real depth images
are subjected to a preprocessing stage. Because of the information loss inherent
to the 3D sensor embedded in Pepper, it is almost impossible to reconstruct
accurate depth maps, specially when the scenes include several shiny or dark
objects. Given this limitation, we focus on improving the real sensor readings,
but also on corrupting the simulated depth images so they resemble their real-
world counterpart.

Mixed and lost pixels are usually found near the border of different objects
in a depth map. Therefore a Canny edge detector [2] is applied over the simu-
lated depth images to find regions where pixel corruption would exist. The edge
detector is also applied over the depth map’s corresponding RGB image, as some
edges cannot be directly extracted from the simulated depth map. The extracted
edges are aggregated and filtered since some of them arise because of textures,
which are usually not associated to places where corruption in real depth im-
ages is present. To filter these edges, a Hough transform [3] is applied over the
aggregated edge map to detect lines, and the value of pixels parallel to each of
the detected lines is compared. If the difference between the average value of the
compared pixels is below a threshold, the edge associated to the detected line is
likely to be produced because of textures, and consequently is discarded. Finally,
the filtered edge map is dilated, and pixel patches are marked over random-sized
regions whose position matches the filtered edges. The resulting mask resembles
the distribution of corrupted pixels of real depth images, and is applied over the
original simulated depth image.

For the real depth images, we only tackle the problem introduced by lost
pixels, which we found to be the main cause of image distortion of the real 3D
sensor used. A mask is constructed to mark all the lost pixels in the real depth
images, and then their value is predicted using Telea’s inpainting technique [19].
The same procedure is applied over the corrupted simulated depth maps. Finally,
both real and simulated images are decimated (and subjected to an anti-aliasing
filter) to reduce their dimensionality to 60 × 80 pixels. Fig. 1 shows a diagram
of the described pipeline.

4.2 Laser Integration

Laser range information is usually used in DRL applications as fixed dimensional
representations. Some examples are a fixed-number of sparse laser readings [18],
a fixed number of candidates from a dense laser sensor [16], and image-like

6 F. Leiva et al.

Real Depth
Image

Simulated
Depth and

RGB Images

Canny Edge
Detection and
Aggregation

Inpainting
and Resizing

Processed
Depth Images

Edge
Filtering

Noise
Generation

Noisy Simulated
Depth Image

Fig. 1: Diagram of the preprocessing pipeline for simulated and real depth images.

representations [13] (e.g 3D LiDAR). For sparse lasers and fixed candidates,
their distribution and resolution become critical in the observability of the MDP,
but a high dimensionality may produce slow learning since in most cases these
elements are fed to fully connected layers, which do not necessarily exploit the
nature of the representation. While image-like representations do exploit the
nature of the readings through convolutional layers, all these representations
fail to identify openings (areas without obstacles in the sensor range) since in
those cases the readings must be saturated to their maximum value to maintain
a consistent representation. Furthermore, in all cases, the representations only
consider obstacles in a direct line of sight, failing to model complex environments.

In this work we construct and unordered, size-independent representation of
the environment, which we will refer to as “local map”. This local map is made
by simply integrating laser scans across time in a fixed-frame, and storing them
as a point-cloud. In in this case, the fixed-frame utilized to perform such inte-
gration is set by the robot’s odometry. As odometry also integrates the error
of the encoders, navigating through large environments using this methodology
produces clearly distorted local maps. To address this issue, the laser scan inte-
gration is limited to a fixed distance D from the robot’s local frame, as points
within this range are less likely to be distorted by the odometry error. In the
case of the Pepper robot, D is set to 6.5 m.

Collision Avoidance through Multimodal DRL 7

As environments are subject to change due to dynamic obstacles, we also
include a point-removal step to be able to model this phenomenon. To do this,
points from the local map that should be perceived in the current laser scan but
are not, are discarded. This process includes a tolerance in the criterion, which
is set to the maximum angular error of the laser. This step also helps reducing
the distortion of the map, since non-coherent points are deleted. Fig. 2 shows
the difference between raw laser range readings and the proposed representation
of the environment.

8 6 4 2 0 2 4 6 8
X [m]

6

4

2

0

2

Y
 [

m
]

Integrated pointcloud

Sensor readings

Robot path

Fig. 2: Difference between raw laser measurements and the proposed odometry based
local map. The green dots represent the trajectory followed by the robot, whilst orange
points correspond to its raw laser range measurements. The blue points represent the
obtained local map, constructed by integrating and filtering laser readings.

The advantages of this representation are clear. It encapsulates information
to distinguish between opening areas from objects at the saturation distance. It
also allows to model the environment with increasingly precision as the robot
navigates through it, while modeling out-of sight objects. Finally, it allows the
use of cheaper sensors, as it can artificially augment the sensor’s resolution.

4.3 Algorithm and Networks’ Architecture

To train the collision avoidance policy we use DDPG [8], a continuous control
DRL algorithm. Since DDPG is an actor-critic method, two independent neural
networks are designed to parameterize the policy (actor) and the state-action
value function (the critic). In this work, both of these networks share almost the
same structure, differing only in their inputs and outputs.

As we combine different sensor measurements to conform the state space, a
multimodal strategy is followed to perform sensor fusion. In this regard, every
sensor is processed independently by different feature extractors (which are part
of the same neural network), and the resulting embeddings are concatenated.
However, given that the laser measurements representation (the local map) has

8 F. Leiva et al.

a non-fixed dimensionality, neither fully-connected nor convolutional layers can
directly take it as input. Instead, we follow the approach presented in [14], using
shared weights and symmetric activation functions to go from a variable input
size to a fixed dimensionality embedding.

The approach followed consists of two steps. First, every point from the
map is processed by a series of fully connected layers independently (the same
fully connected layers are applied to every point). Then, the outputs from this
operation are aggregated using max pooling to obtain a global feature vector,
which encapsulates the input’s information in a fixed-dimensional representation.
Even though the number of points conforming the local map may vary at every
time step during the policy execution, we select a fixed number of points from
this representation during training to allow batch processing. If the number of
points from the local map exceeds the fixed selected number of points, uniform
sampling is performed. On the contrary, if the points from the local map are
not enough, we randomly repeat points until the requirement is satisfied. At test
time, the complete local map is utilized.

The architectures of the designed actor and critic are summarized in Fig. 3,
where hyper parameter and design choices were primarily taken from [10]. The
depth image feature extractor is conformed by three convolutional layers: Conv1
with 16 8×8 filters (stride 4), Conv2 with 32 4×4 filters (stride 2), and Conv3
with 32 2×2 filters (stride 2). The feature extractor for the local map consists of
three fully connected layers of 64, 64 and 1024 hidden units respectively. Finally,
the feature extractor for the odometry speed estimations (and actions, for the
critic) consists of two fully connected layers of 32 and 64 hidden units each.

The embeddings obtained from these modules are concatenated and used as
input for a fully connected layer (FcFus), which has 200 hidden units. The output
from this layer goes to an LSTM layer, and then to another fully connected layer
(FcPre), both having 200 cells/hidden units. The final layer (FcOut) outputs the
action for the actor and the state-action value for the critic, respectively.

Conv1|ReLU
Conv2|ReLU

Conv3|ReLU

LSTM

vodom

{ p1 ,..., pn }

a

Q(s, a)

Depth Image

MaxPool
Local Map

FcLayers|LReLU

Image
Features

Odometry
Features

Local Map
Features

FcFus|LReLU

FcOut

Actor Only
Critic Only
Shared

a

FcPre|LReLU

FcLayers|LReLU

Linear

Tanh

Fig. 3: Representation of the proposed multimodal network architecture.

Collision Avoidance through Multimodal DRL 9

We use LSTM layers to address the partial observability due to the robot’s
sensors limitations, that is, to rely on several observations to approximate the
actual environment state at each time step. These layers process the concate-
nated embeddings obtained from the inputs, thus, being able to integrate sensory
information through time. To effectively train the neural network with these lay-
ers, uniform sampling from the replay buffer cannot be performed. Instead, the
method proposed in [10] is utilized to sample sequential experience traces.

5 Evaluation Results

5.1 Experimental Setup

The training environments are constructed using the Gazebo simulator [7], whilst
TensorFlow[1] is used to implement DDPG and the associated neural network
models. To bridge the simulations with the training algorithm, we rely on ROS
[15] interfaces.

Episodes are limited to 500 time steps, but may end prematurely whenever
a collision between the agent and any obstacle is detected. At every time step, a
velocity command is executed for 400 ms. The maximum instantaneous speeds
for the Pepper robot are set to 0.5 and 0.3 m/s for the x and y-axis, and 0.5
rad/s for the angular speed around the z-axis.

We utilize a batch size of 64 for training, whereas learning rates, weight
initializations and exploration strategy remain the same as in the original DDPG
paper [8]. All processing is conducted in a laptop equipped with an Intel i7-
7700HQ processor, and a Nvidia GeForce GTX 1060 GPU. With the available
hardware, 7,500 training steps take approximately one hour.

5.2 Simulation Results

To validate our method in simulations, we constructed a virtual environment
consisting of a room of 18 m long by 10 m wide. This room has internal and
external walls, windows, doors, and static obstacles placed over free regions (see
Fig. 4). Using this environment, three experiments were conducted.

To validate the effectiveness of laser integration, we compare the performance
of agents trained using the local map representation (Experiment 1) against
agents trained using normalized sparse range measurements (Experiment 2). In
these experiments 3D perception is not available, as we limit the state space
to processed laser readings and odometry based speed estimations. To account
for this, the environment’s obstacles are constrained to objects that can be com-
pletely perceived using laser readings (see Fig. 4a). To test the complete proposed
system, we train a policy which uses processed depth images, integrated laser
measurements (the local map representation), and odometry based speed esti-
mations (Experiment 3). In this case the environment’s obstacles include tables,
as 2D range measurements are not enough to model their collision geometry (see
Fig. 4b).

10 F. Leiva et al.

(a) (b)

Fig. 4: Virtual environments constructed for training and validation in simulations. (a)
Environment used for Experiments 1 and 2. Contains 10 simple obstacles (persons).
(b) Environment used for Experiment 3. Contains 10 simple obstacles (persons) and 6
complex obstacles (tables).

To evaluate the performance of the trained agents, two metrics are utilized:
the total reward obtained in an episode R =

∑T
t=1 r(st, at), and the average

instantaneous forward speeds of an episode (penalizing high angular speeds)

V∑ = 1
T

∑T
t=1 v

t
x cos(vtθ).

Fig. 5 shows the obtained results for the conducted experiments. The train-
ing process was limited to 7.2×104 time steps (approximately 10 hours per trial)
for Experiments 1 and 2 (Fig. 5a and 5b). For Experiment 3 (Fig. 5c and 5d),
training was conducted for 11×104 time steps (that is, for approximately 15
hours per trial). Every 8×103 and 10×103 time steps, respectively, 50 valida-
tion episodes are performed (the policy is executed directly, i.e., the exploration
is turned off). The graphs show the average and standard deviations from 10
independent trials.

The obtained results show that policies trained using the proposed method
(using both high and low dimensional state spaces) are able to efficiently avoid
obstacles in the constructed virtual environment. From Fig. 5a and 5b it is
clear that agents trained using raw sparse laser measurements fail to get a good
performance, as the environment’s observability is heavily limited by the robot’s
perception range. In contrast, including the local map in the state space allows
the trained agents to learn proficient obstacle avoidance policies, thus, validating
the benefits of such representation.

Fig. 5c and 5d show that agents trained with the proposed method consis-
tently get good performance, regardless of the high variance across training and
validation episodes due to robot and obstacles initial pose randomization. This
also shows the ability of the proposed method of combining multisensory inputs,
as the trained policies successfully learn to avoid tables in spite of contradictory
information between lasers and depth images (the constructed local map detects
tables as point obstacles or collision free regions, and their 3D geometry is only
captured by the depth images).

There is a slight reduction in the overall performance and its variance (both
in terms of the reward and average speeds) compared to the results obtained
using only the local map (Fig. 5a and 5b); however, this is due to the difference

Collision Avoidance through Multimodal DRL 11

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2
Time step ×10

4

50

0

50

100

150
A

ve
ra

g
e
 R

e
tu

rn
local-map

norm-lasers

(a)

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2
Time step ×10

4

0.0

0.1

0.2

0.3

0.4

A
ve

ra
g

e
 S

p
e
e
d

local-map

norm-lasers

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time step ×10

5

50

0

50

100

A
ve

ra
g

e
 R

e
tu

rn

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time step ×10

5

0.1

0.2

0.3

A
ve

ra
g

e
 S

p
e
e
d

(d)

Fig. 5: Performance evaluations for the experiments carried out. (a) and (b) show the
comparison between agents trained using the proposed local-map representation, and
agents trained using normalized sparse range measurements (Experiments 1 and 2). (c)
and (d) show the performance of agents trained using the complete proposed method
(Experiment 3).

between the number of obstacles utilized for Experiment 1 and Experiment 3
(refer to Fig. 4). As we randomize the initial pose of the robot and the obstacles
for each episode, a small number of obstacles allows the existence of easy episodes
(which results in occasionally higher rewards). On the other hand, the difficulty
is higher, but remains similar across episodes, when the environment is highly
cluttered (which results in lower rewards).

5.3 Validation on the Physical Robot

The collision avoidance policy trained using the full proposed method in simu-
lations (Experiment 3) was directly transferred to a real Pepper robot by using
external processing and ROS interfaces. Depth images and laser measurements
were manipulated according to the methodology described in Sections 4.1 and
4.2, respectively. To evaluate the performance of the policy, we considered three
different indoor environments: A study room (static obstacles), a hall (static and
dynamic obstacles) and a cluttered laboratory (dynamic obstacles, maze-like en-
vironment).

The agent was able to navigate successfully through collision free regions in
all these environments, regardless of the variety of unseen obstacles it encoun-

12 F. Leiva et al.

tered with respect to simulations. Furthermore, it behaved adequately even when
undergoing maze-like environments. Examples of the trained policy deployed in
real world environments can be found at https://youtu.be/ypC39m4BlSk.

(a) (b) (c)

Fig. 6: Real work environments utilized to validate the trained collision avoidance
policy. (a) Study room, (b) hall, and (c) laboratory.

The generalization capabilities of the trained policy may be explained con-
sidering that (i) simulated and real local maps are similar, and (ii) the avoidance
of 3D obstacles in the real world only requires coarse information regarding their
shapes, which can be obtained using the processed depth images. These condi-
tions allowed the policy to perform well in the testing environments even though
it was trained with limited information in simulations.

On the other hand, it was observed that the policy’s performance was severely
undermined when the robot was deployed in environments where outdoor light-
ing was present, as Pepper’s depth sensor produced highly corrupted images
under such conditions. The same performance detriment was observed when
unprocessed depth images were used as observations. This behavior can be ex-
plained considering the domain mismatch between simulated depth images used
for training the policy, and the heavily corrupted depth maps that were being
fed to the policy in the aforementioned scenarios.

6 Conclusions and Future Work

In this work we presented a successful approach to solve the obstacle avoidance
problem using the Pepper robot, with experimental validations in real-world en-
vironments. We also presented a novel approach to use point-clouds, and more
generally, unordered and non-fixed dimensional inputs for RL applications. Fi-
nally, a simple preprocessing stage to bridge the reality gap between simulated
and real depth images was presented and validated.

Although in this work we only tackled the obstacle avoidance problem, sim-
ilar tasks, such as visual navigation, could be solved relying on the proposed
modelling. Furthermore, during our experiments, the real world performance of
the policy was strongly dependent of the input preprocessing applied during
training and deployment. Consequently, realistic input simulation and domain
adaptation arise as interesting areas of study for future work.

https://youtu.be/ypC39m4BlSk

Collision Avoidance through Multimodal DRL 13

Finally, in this implementation we integrate laser scans using encoder-based
odometry to construct the unordered representation of laser measurements. This
greatly limits the quality of the integration. We propose the use of proper point
cloud registration (for instance, using Iterative Closest Point) when LiDAR in-
formation allows the use of such methods, and also the use of point-clouds pro-
duced by methods such as visual SLAM as inputs of our policy. Furthermore,
these methods could also be applied to register point-clouds from the depth
sensor, as the local map feature extraction extends to 3D points.

Acknowledgements

This work was partially funded by FONDECYT Project 1161500 and CONICYT-
PFCHA/Maǵıster Nacional/2018-22182130.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org

2. Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-8(6), 679–698 (Nov 1986).
https://doi.org/10.1109/TPAMI.1986.4767851

3. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect
lines and curves in pictures. Commun. ACM 15(1), 11–15 (Jan 1972).
https://doi.org/10.1145/361237.361242

4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (Nov 1997). https://doi.org/10.1162/neco.1997.9.8.1735

5. Kahn, G., Villaflor, A., Ding, B., Abbeel, P., Levine, S.: Self-supervised deep rein-
forcement learning with generalized computation graphs for robot navigation. In:
2018 IEEE International Conference on Robotics and Automation (ICRA). pp. 1–8
(May 2018). https://doi.org/10.1109/ICRA.2018.8460655

6. Kim, S., Kim, M., Ho, Y.: Depth image filter for mixed and noisy pixel removal in
rgb-d camera systems. IEEE Transactions on Consumer Electronics 59(3), 681–689
(August 2013). https://doi.org/10.1109/TCE.2013.6626256

7. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566). vol. 3, pp. 2149–2154
vol.3 (Sep 2004). https://doi.org/10.1109/IROS.2004.1389727

8. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning. In: ICLR (2016)

9. Liu, G.H., Siravuru, A., Prabhakar, S., Veloso, M., Kantor, G.: Learning end-to-end
multimodal sensor policies for autonomous navigation. In: Proceedings of the 1st
Annual Conference on Robot Learning. Proceedings of Machine Learning Research,
vol. 78, pp. 249–261. PMLR (13–15 Nov 2017)

https://www.tensorflow.org/
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1145/361237.361242
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/ICRA.2018.8460655
https://doi.org/10.1109/TCE.2013.6626256
https://doi.org/10.1109/IROS.2004.1389727

14 F. Leiva et al.

10. Lobos-Tsunekawa, K., Leiva, F., Ruiz-del-Solar, J.: Visual navigation for biped hu-
manoid robots using deep reinforcement learning. IEEE Robotics and Automation
Letters 3(4), 3247–3254 (Oct 2018). https://doi.org/10.1109/LRA.2018.2851148

11. Nguyen, C.V., Izadi, S., Lovell, D.: Modeling kinect sensor noise for improved 3d
reconstruction and tracking. In: 2012 Second International Conference on 3D Imag-
ing, Modeling, Processing, Visualization Transmission. pp. 524–530 (Oct 2012).
https://doi.org/10.1109/3DIMPVT.2012.84

12. Pandey, A.K., Gelin, R.: A mass-produced sociable humanoid robot: Pepper: The
first machine of its kind. IEEE Robotics Automation Magazine 25(3), 40–48 (Sep
2018). https://doi.org/10.1109/MRA.2018.2833157

13. Patel, N., Choromanska, A., Krishnamurthy, P., Khorrami, F.: A deep learning
gated architecture for UGV navigation robust to sensor failures. Robotics and Au-
tonomous Systems 116, 80–97 (2019). https://doi.org/10.1016/j.robot.2019.03.001

14. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. CoRR abs/1612.00593 (2016), http://arxiv.
org/abs/1612.00593

15. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: Ros: an open-source robot operating system. In: Proc. of the
IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open Source
Robotics. Kobe, Japan (May 2009)

16. Sampedro, C., Bavle, H., Rodriguez-Ramos, A., de la Puente, P., Cam-
poy, P.: Laser-based reactive navigation for multirotor aerial robots us-
ing deep reinforcement learning. In: 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). pp. 1024–1031 (Oct 2018).
https://doi.org/10.1109/IROS.2018.8593706

17. Tai, L., Li, S., Liu, M.: A deep-network solution towards model-less
obstacle avoidance. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 2759–2764 (Oct 2016).
https://doi.org/10.1109/IROS.2016.7759428

18. Tai, L., Paolo, G., Liu, M.: Virtual-to-real deep reinforcement learning: Contin-
uous control of mobile robots for mapless navigation. In: 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). pp. 31–36 (Sep
2017). https://doi.org/10.1109/IROS.2017.8202134

19. Telea, A.: An image inpainting technique based on the fast marching method.
Journal of Graphics Tools 9(1), 23–34 (2004)

20. Xie, L., Wang, S., Rosa, S., Markham, A., Trigoni, N.: Learning with training
wheels: Speeding up training with a simple controller for deep reinforcement learn-
ing. In: 2018 IEEE International Conference on Robotics and Automation (ICRA).
pp. 6276–6283 (May 2018). https://doi.org/10.1109/ICRA.2018.8461203

21. Xie, L., Wang, S., Markham, A., Trigoni, N.: Towards monocular vision based
obstacle avoidance through deep reinforcement learning. CoRR abs/1706.09829
(2017), http://arxiv.org/abs/1706.09829

22. Yang, L., Liang, X., Xing, E.P.: Unsupervised real-to-virtual domain unification
for end-to-end highway driving. CoRR abs/1801.03458 (2018), http://arxiv.
org/abs/1801.03458

23. Yang, S., Konam, S., Ma, C., Rosenthal, S., Veloso, M.M., Scherer, S.: Ob-
stacle avoidance through deep networks based intermediate perception. CoRR
abs/1704.08759 (2017), http://arxiv.org/abs/1704.08759

https://doi.org/10.1109/LRA.2018.2851148
https://doi.org/10.1109/3DIMPVT.2012.84
https://doi.org/10.1109/MRA.2018.2833157
https://doi.org/10.1016/j.robot.2019.03.001
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
https://doi.org/10.1109/IROS.2018.8593706
https://doi.org/10.1109/IROS.2016.7759428
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/ICRA.2018.8461203
http://arxiv.org/abs/1706.09829
http://arxiv.org/abs/1801.03458
http://arxiv.org/abs/1801.03458
http://arxiv.org/abs/1704.08759

	Collision Avoidance for Indoor Service Robots through Multimodal Deep Reinforcement Learning

