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Abstract. Soccer ball detection is identified as one of the critical chal-
lenges in the RoboCup competition. It requires an efficient vision system
capable of handling the task of detection with high precision and recall
and providing robust and low inference time. In this work, we present a
novel convolutional neural network (CNN) approach to detect the soccer
ball in an image sequence. In contrast to the existing methods where
only the current frame or an image is used for the detection, we make
use of the history of frames. Using history allows to efficiently track the
ball in situations where the ball disappears or gets partially occluded in
some of the frames. Our approach exploits spatio-temporal correlation
and detects the ball based on the trajectory of its movements. We present
our results with three convolutional methods, namely temporal convolu-
tional networks (TCN), ConvLSTM, and ConvGRU. We first solve the
detection task for an image using fully convolutional encoder-decoder
architecture, and later, we use it as an input to our temporal models
and jointly learn the detection task in sequences of images. We evaluate
all our experiments on a novel dataset prepared as a part of this work.
Furthermore, we present empirical results to support the effectiveness of
using the history of the ball in challenging scenarios.

Keywords: robocup, deep learning, ball detection, fully convolutional neural
network, spatio-temporal neural network

1 Introduction

The RoboCup introduced by Kitano et al. [15] serves as the central problem in
understanding and development of Artificial Intelligence. The challenge aims at
developing a team of autonomous robots capable of playing soccer in a dynamic
environment. It requires the development of collective intelligence and an ability
to interact with surroundings for effective control and decision making. Over the
years several humanoid robots [8,21, 9] have participated in the challenge.

* Equal Contribution
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One of the main hurdle identified within the tournament is perceiving the
soccer ball. The efficient detection of soccer ball relies on how good the vision
system performs in tracking the ball. For instance, consider cases where the ball
disappears or gets occluded from robots point of view for a few frames. In such
situations using the current frame is not useful. However, a dependence on the
history of frames can help in making a proper move. In this work, we propose an
approach which can effectively utilize the history of ball movement and improve
the task of ball detection. We first utilize the encoder-decoder architecture of
SweatyNet model and train it for detection of the ball in single images. Later
we use it as a part of our proposed layers and learn from temporal sequences
of images, thereby developing a more robust detection system. In our approach
we make use of three spatio-temporal models: TCN [2], ConvLSTM [26] and
ConvGRU [3].

For this work, we recorded a new dataset for the soccer ball detection task.
We make our data as well as our implementation available on GitHub so that
the results can be easily reproduced. research '. We used Pytorch [19] for our
implementation.
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Fig. 1. The proposed architecture with feed-forward and temporal parts.

! https://github.com/AIS-Bonn/TemporalBallDetection
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2 Related Work

Numerous works have been done in the area of soccer ball detection. Before
RoboCup 2015 the ball was orange, and many teams used color information [22].
Since RoboCup2015, the ball is not color coded anymore, which forced teams to
use more sophisticated learning based approaches like HOG cascade classifier [7].
In recent years, the convolutional approaches with their innate ability to capture
equivariance and hierarchical features in images have emerged as a favorite choice
for the task. In [23] authors use CNN to perform localization of soccer ball by
predicting the z and y coordinates. In a recent work [17] use proposal generators
to estimate regions of soccer ball and further use CNN for the classification
of regions. In [13] authors compared various CNN architectures namely LeNet,
SqueezeNet, and GoogleLeNet for the task of a ball detection by humanoid
robots. In [21] authors inspired by work of [20] proposed a Fully Convolutional
Networks (FCN) that offers a robust and low inference time, which is an essential
requirement for the soccer challenge. As the name suggests, the FCN is composed
entirely of convolution layers which allows them to learn a path from pixels in
the first layers to the pixel in the deeper layers and produce an output in the
spatial domain — hence making FCN architecture a natural choice for pixel-
wise problems like object localization or image segmentation. In [12] authors use
geometric properties of the scene to create graph-structured FCN. In [6] authors
proposed a modification of U-Net [20] architecture by removing skip connections
from encoder to decoder and using depthwise separable convolution. This allows
to achieve improvement in inference time and making it the right choice for
real-time systems.

The existing work uses the current frame for the detection of the soccer ball.
We hypothesize that the history of frames (coherent sequence of previous frames)
could help model in making a better prediction, especially in cases where ball
disappears or is missed for a few frames. To support our hypothesis, we ex-
tend our experiments and use temporal sequences of images. A crucial element
of processing continuous temporal sequences is to encode consensual informa-
tion in spatial and temporal domains simultaneously. There are several methods
which allow extracting spatiotemporal video features like widely used Dense
Trajectories [25] where densely sampled points are tracked based on information
from the optical flow field and describe local information along temporal and
spatial axes. In [4] authors proposed Two-Stream Inflated 3D ConvNet (I3D)
where convolution filters expanded into 3D let the network learn seamless video
feature in both domains. For predicting object movement in the video, Farazi
et al. proposed a model based on frequency domain representation [10]. One
of the recent methods in modeling temporal data is temporal convolution net-
works (TCN) [16]. The critical advantage of TCN is the representation gained
by applying the hierarchy of dilated causal convolution layers on the temporal
domain, which successfully capture long-range dependencies. Also, it provides a
faster inference time compared to recurrent networks, which make it suitable for
real-time applications.
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Additionally, there are successful end-to-end recurrent networks which can
leverage correlations within sequential data [26, 11, 5]. ConvLSTM [26] and Con-
vGRU [3] are recurrent architectures which compound convolutions to determine
the future state of the cell based on its local neighbors instead of the entire input.

In this work, we propose a CNN architecture which utilizes sequences of ball
movements in order to improve the task of soccer ball detection in challenging
scenarios.

3 Detection Models

3.1 Single Image Detection

In this paper, the task of soccer ball detection is formulated as a binary pixel-
wise classification problem, where for a given image, the feed-forward model
predicts the heatmap corresponding to the soccer ball. In this part we utilize
three feed-forward models namely SweatyNet-1, SweatyNet-2 and SweatyNet-3
as proposed in [21].

All three networks are based on an encoder-decoder design. The SweatyNet-1
consists of five blocks in the encoder part and two blocks in the decoder part.
In the encoder part, the first block includes one layer, and the number of filters
is doubled after every block. In the decoder part, both blocks contain three
layers. Each layer comprises of a convolutional operator followed with batch
normalization and ReLLU as the non-linearity. In addition, bilinear upsampling
is used twice: after the last block of the encoder and after the first block of the
decoder. Skip connections are added between layers of encoder and decoder to
provide high-resolution details of the input to the decoder. Similar approaches
have been successfully used in Seg-Net [1], V-Net [18] and U-Net [20].

All convolutional filters across the layers are of the fixed size of 3 x 3. The
encoder part includes four max-pooling layers where each one is situated after
the first four blocks. The number of filters in the first layer is eight, and it is
doubled after every max-pooling layer. In the decoder, the number of filters is
reduced by a factor of two before every upsampling layer.

The other two variants of SweatyNet, are designed to reduce the number
of parameters and speed up the inference time. In SweatyNet-2, the number of
parameters is reduced by removing the first layer in each of the last five blocks
of the encoder. In SweatyNet-3, the number of channels is decreased by changing
the size of convolutions to 1 x 1 in every first layer of last five encoder blocks
and both of the decoder blocks.

3.2 Detection in a Sequence

Temporal extensions capture spatio-temporal interdependence in the sequence
and allow to predict the movement of the ball capturing its size, direction, and
speed correctly. In our experiments, we utilize the temporal series of images to
improve the task of soccer ball detection further.
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Fig. 2. The prediction results, on the synthetically generated sequences. The network

correctly predicts the future position and successfully keeps the size of slow moving

ball with ¢ = 4 even when the history is sparse. Note that sparse history resembles an
occluded ball.
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Fig. 3. Visualization of a) a stack of causal convolutional layers which compose TCN
architecture. b) a convolutional LSTM cell.

Our approach illustrated in Fig. 1 propose a temporal layer and learnable
weight w which makes use of the history of sequences of fixed length to predict the
probability map of the soccer ball. We use a feed-forward layer TCN and compare
it with recurrent layers ConvLSTM and ConvGRU. The three approaches differ
in the type of connections formed in the network.

We train our model to learn heatmaps of a ball based on the sequence of
frames representing the history of its movement. More precisely, if the timestamp
of the current frame is ¢, given the heatmaps from (¢t — h) to (¢t — 1) the output
of the network is the sequence of heatmaps from timestamp ¢ to (¢ + p), where
h is the history length and p is the length of predicted sequence.

The ConvLSTM and ConvGRU layers are stacks of several convolutional
LSTM and GRU cells, respectively, which allows for capturing spatial as well
as temporal correlations. Each ConvLLSTM cell acts based on the input, forget
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and output gates, while the core information is stored in the memory cell con-
trolled by the aforementioned gates. Each ConvGRU cell adaptively captures
time dependencies with various time ranges based on content and reset gates.
Convolutional structure avoids the use of redundant, non-local spatial data and
results in lower computations. Fig. 3 depicts the structure of convolutional LSTM
cell where the input is a set of flattened 1D array image features obtained with
the convolutions layers. Convolutional GRU cell also differs from standard GRU
cell only in the way how input is passed to it.

Unlike the two recurrent models, where gated units control hidden states,
TCN hidden states are intrinsically temporal. This is attributed to the dilated
causal convolutions used in TCN, which generates temporally structured states
without explicitly modeling connection between them. Thus, TCN captures long
term temporal dependencies in a simple feed-forward network architecture. This
feature further provides an advantage of the faster inference time. Fig. 3 shows
dilated causal convolutions for dilations 1, 2, 4, and 8. For our work, we replicated
the original TCN-ED structure with repeated blocks of dilated convolution layers
and normalized ReLLU as activation functions.

For sequential data, it is challenging to train a network from scratch because
of the limited size of the dataset and the difficulties in collecting the real data.
Besides, the training process requires more memory to store a batch of sequences,
resulting in a choice of smaller batch size. To address this problem, we use
transfer learning and finetune the weights of our model on the sequences of
synthetic data. We use SweatyNet-1 as the feature extractor and finetune it
with the temporal layers.

For the input to temporal layers; TCN, ConvLSTM, and ConvGRU, we also
take advantage of high-resolution spatial information by concatenating the out-
put of 2" and 6" block of SweatyNet-1. To speed up the training process and
propagate spatial information, we apply a convolution of size 7 X 7 on the com-
bined features. Moreover, we take an element-wise product of the output of
convolution with a learnable weight of w and add it to the output of SweatyNet.
This combination serves as an input to the temporal layers. The weight w serves
as a gate which learns to control how much of high-resolution information is
transferred from the early layers of Sweaty-Net and helps the network in detect-
ing soccer ball with subpixel level accuracy.

4 Experiments

In this section, we describe the details of the training process for our two sets
of experiments. In the first experiment, we consider a problem of localization
of the object in an image. In the second experimet, we evaluated our temporal
approach. The evaluation of our experiments is discussed in Section 4.3.

4.1 Training

Detection in an Image: For our work, we created a dataset of 4562 images,
of which 4152 images contain a soccer ball. We refer to it as SoccerData. The
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Fig. 4. The result of the temporal part, trained on a dataset with one ball per frame.
Note that the network can generalize to detect two moving objects.
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Fig. 5. Qualitative results of the trained network in detecting two balls. a) SweatyNet
prediction b) residual information c) ground truth d) temporal prediction e) real image

images are extracted from a video recorded from the robot’s point of view and
are manually annotated using the imagetagger 2 library. The images are from
three different fields with different light sources. Note that since the data is
recorded on walking robot, in many images we have blurry data.

Each image is represented by a bounding box with coordinates: Z.in, Ymin,
Tmazs Ymaz- FOT teaching signal we generated a binormal probability distribution
centered at ¢ = 0.5(%maz + Tmins Ymaz + Ymin) and with the variance of r =
0.5min(Tmaz — Tmin, Ymaz —Ymin )- 10 contrast to the work of ([21]) where authors
consider ball of fixed radius, we take into account the variable radius of a ball
by computing the radius based on the size of the bounding box.

We apply three variants of SweatyNet model as described in Section 3 on
the SoccerData. For the fair evaluation of the model, we randomly split our data
into 70% training and 30%testing. In the training phase, mean squared error
(MSE) is optimized between a predicted and a target probability map. We use
Adam [14] as the optimizer. We trained all of our models for a maximum of
100 epochs on the Nvidia GeForce GTX TITAN GK110. Similar to ([21]) the
hyperparameters used in our experiments are learning rate of 0.001 and a batch
size of 4. In addition, we experiment with dropout probability of 0.0,0.3 and 0.5.

% https://imagetagger.bit-bots.de/
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Detection in a Sequence: We train the temporal part in two ways: (i) we
pre-train the temporal model on artificially generated sequences and finetune it
on top of the pre-trained SweatyNet-1 for the real sequences,

(ii) finetune the joint model on the real sequences where the pre-trained weights
are used only for the SweatyNet-1 model.

Algorithm 2 details the procedure for synthetic data generation. To get
heatmaps of a particular sequence L; at each time step j we generate a multi-
normal probability distribution centered at (x;,y;) with a variance equal to the
radius R;.

To finetune the model on the real sequential data, we extracted a set of real
soccer ball frames from bags recorded during RoboCup2018 Adult-Size games.
Since video frames do not always contain a ball in the field of view, we prepro-
cess videos to make sure that we do not use a sequence of frames without any
ball present. With such restrictions, we got 20 sets of consecutive balls with an
average length of 60. For all of our experiments, we fixed the history size h to
20 and prediction length p to 1.

For training on real data, we use learning rates of 1le—5 for the detection task
and le — 4 for the temporal part after pretraining. In the temporal network on
the artificial sequences, the learning rate is set to le — 5. We train on synthetic
data for 20 epochs and 30 epochs for the real data.

TCN: Encoder and decoder of TCN are two convolutional networks with two
layers of 64 and 96 channels, respectively. We set up all parameters following the
work of ([16]) except that we use Adam as an optimizer with MSE loss.

ConvLSTM and ConvGRU: We use four layers of ConvLSTM / ConvGRU
cells with the respective size of 32, 64, 32, 1, and fixed kernel of size five across
all layers.

Multiple Balls in a Sequence: To verify that our model can generalize, we
test it on a more complex scenario with two present balls. Note that the network
was only trained on a dataset containing a single ball. The qualitative results
can found in Fig. 4 and Fig. 5. These figures depict that the model is powerful
enough to handle cases not covered by training data. The temporal part leverages
the previous frames and residual information and can detect the ball which is
absent in SweatyNet output (Fig. 4 a) vs. d)).

4.2 Postprocessing

The output of a network is a probability map of size 160 x120. We use the contour
detection technique explained in Algorithm 1 to find the center coordinates of
a ball. The output of the network is of lower resolution and has less spatial
information than the input image. To account for this effect, we calculate sub-
pixel level coordinates and return the center of contour mass, as the center of
the detected soccer ball.
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Algorithm 1 Postprocessing to find coordinates of a ball.
M <+ A matrix of size 120 x 160 representing predicted output of a network.
Apin < Area of a smallest ball in the training set.

By <~ M > 0.1, binary map.
List L + detect contours in Ba.
C < contour in L with maximum area.
if area of C < Apin. then
(Cﬂcvcy) A (_17 _1)
else
We <+ mask M with C.
(cz,cy) < center of mass of We.
end if
return (cz,cy)

Algorithm 2 Artificial sequences creation.

N < Number of sequences.
Ly <[] A list to store a list of coordinates of a moving ball for all sequences.
Ry + [] A list to store radius of a ball for all sequences.
fori=1to N do
R; ~U({3,4,5}), z1 ~U({0, ..., frames}),y1 ~U{O, ..., framey})
steps; ~ U({30,...,60}) and dist; ~ U({50,...,500})
dz; < x1/stepsi, dy; < y1/steps;
Ry < Ri, Li < [(z1,91)]
for j = 1 to steps; do
direction_xj, direction_y; ~U({—1,1})
xj + x; + direction_x;.dz;, y; < y; + direction_y;.dy;
Li < (xj,y;)
end forLy < L;
end for
return Ly, Ry

4.3 Evaluation

To analyze the performance of different networks we use several metrics: false
discovery rate (FDR), precision(PR), recall (RC), Fl-score(F1) and accuracy
(Acc) as defined in Eq. 1, where TP is true positives, FP is false positives, FN
is false negatives, and TN is true negatives.

FP TP TP
R FP+TP’ R TP+FP’RC TP+ FN’ (1)
b _g, PRXEC TP+ TN
TS PR+RCTC“TTPYFP+TN+FN

An instance is classified as a TP if the predicted center and actual center of
the soccer ball is within a fixed distance of v = 5.
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Fig. 6. Top row is the part of the input history (frame {18,19,20}). The bottom row
consists of heatmaps where a) visualization of the residual information from Sweaty
Net to temporal, b) ground truth ball position and ¢) predicted output by the temporal
part.

Fig. 7. Example of correctly detected ball after finetuning with the temporal model
while the confidence of just the SweatyNet is very low, resulting in false negative
detection. The left image is the real image; the middle is SweatyNet output without
finetuning; the right one is SweatyNet output after finetuning.

5 Results

The results of our experiments are summarized in Table 1. The performance of all
three models are comparable. To improve generalization and prevent overfitting,
we further experiment with different dropout [24] probability values. We train all
our models on a PC with Intel Core i7-4790K CPU with 32 GB of memory and
a graphics card Nvidia GeForce GTX TITAN with 6 GB of memory. For real-
time detection, one major requirement is of a faster inference time. We report
the inference time of the model on the NimbRo-OP2X robot in Table 2(a).
The NimbRo-OP2X robot is equipped with Intel Core i7-8700T CPU with 8
GB of memory and a graphics card Nvidia GeForce GTX 1050 Ti with 4 GB
of memory. Since all three models don’t use the full capacity of GPU during
inference, which allows bigger models to perform extra computations in parallel;
as a result, all three SweatyNet networks are comparable in real time inference.
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Fig. 8. From left to right: input image, the ground truth, prediction of the neural
network, and the final output after post-processing.

Fig. 8 demonstrates the effectiveness of the model for the task of soccer ball
detection. For this study, we only consider SweatyNet-1.

The results of sequential part are further summarized in Table 2(b). The
sequential network successfully captures temporal dependencies and gives an
improvement over the SweatyNet. Usage of artificial data for pre-training the
temporal network is beneficial due to the shortage of real training data and
boosts performance. Fig. 2 illustrates artificially generated ball sequences with
the temporal prediction. We observed that when the temporal model is pre-
trained on the artificial data, the learnable weight for the residual information
takes a value of 0.57 on average, though without pre-training, the value is 0.49.
The performance of TCN is comparable to ConvLSTM and ConvGRU, but it

Table 1. Evaluation of SweatyNets on the task of soccer ball detection. The highlighted
numbers are the best performance for a particular dropout probability.

Performance Metric
Model Dropout FDR | PR | RC | F1 | Accuracy
Train Test— Train Test— Train Test— Train Test— Train Test

SweatyNet-1 0.0 0.001 0.017 0.999 0.981 0.987 0.949 0.993 0.964 0.989 0.945
SweatyNet-2 0.0 0.003 0.020 0.997 0.980 0.986 0.912 0.992 0.948 0.988 0.916
SweatyNet-3 0.0 0.002 0.019 0.998 0.981 0.990 0.935 0.994 0.959 0.991 0.933

SweatyNet-1 0.3 0.017 0.019 0.984 0.979 0.988 0.950 0.986 0.966 0.978 0.945
SweatyNet-2 0.3 0.014 0.022 0.986 0.980 0.986 0.949 0.986 0.964 0.979 0.941
SweatyNet-3 0.3 0.014 0.024 0.986 0.978 0.987 0.956 0.987 0.966 0.979 0.945

SweatyNet-1 0.5 0.039 0.024 0.960 0.975 0.989 0.972 0.974 0.973 0.961 0.955
SweatyNet-2 0.5 0.029 0.015 0.970 0.983 0.870 0.812 0.917 0.899 0.882 0.844
SweatyNet-3 0.5 0.048 0.022 0.952 0.981 0.982 0.940 0.967 0.959 0.949 0.932




12 A. Kukleva, A. Khan et al.

considerably outperforms ConvLSTM and ConvGRU in terms of inference time,
which is a critical requirement for a real-time decision-making process. Table 2(a)
presents a comparison between temporal models on inference time.

To support our proposal of using sequential data, in Fig. 7 we present an
example image where the SweatyNet alone is uncertain of the prediction, though
the network gives an strong detection when further processed with the temporal
model.

Table 2. (a) Inference time comparison. For sequential models, we report time on top
of the base model, (b) Evaluation of different tested models. Note real denotes that
training of the sequential part is performed only on real data and ft means that a
pre-training phase on the artificially generated ball sequences is done before finetuning
on real data.

Method Time in ms measured on the robot

SweatyNet-1 4.2
SweatyNet-2 3.5
SweatyNet-3 4.7
LSTM 219.6
GRU 178.5
TCN 1.1

(a)

Performance Metric on Test set
Method — FDR — PR —RC —F1— Acc

SweatyNet-1 (0.5) 0.024 0.975 0.972 0.973 0.955
Net+LSTM(real) 0.025 0.976 0.979 0.977 0.962
Net+LSTM(ft) 0.026 0.975 0.987 0.981 0.967
Net+GRU(real) 0.024 0.975 0.980 0.978 0.963
Net+GRU(ft) 0.026 0.972 0.987 0.980 0.966
Net+TCN(real) 0.024 0.976 0.982 0.979 0.964
Net+TCN(ft) 0.026 0.974 0.985 0.980 0.966

6 Conclusion

In this paper, we address the problem of soccer ball detection using sequences
of data. We proposed a model which utilizes the history of ball movements for
efficient detection and tracking. Our approach makes use of temporal models
which effectively leverage the spatio-temporal correlation of sequences of data
and keeps track of the trajectory of the ball. We present three temporal models:
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TCN, ConvLLSTM, and ConvGRU. The feed-forward nature of TCN allows faster
inference time and makes it an ideal choice for real-time application of RoboCup
soccer. Furthermore, we show that with transfer learning, sequential models can
further leverage knowledge learned from synthetic counterparts. Based on our
results, we conclude that our proposed deep convolutional networks are effective
in terms of performance as well as inference time and are a suitable choice for
soccer ball detection. Note that the presented models can be used for detecting
other soccer objects like goalposts and robots.
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